2023 Infrastructure Evaluation And Capital Improvement Plan

Grand Traverse Commons

For: Grand Traverse Commons Joint Planning Commission

October 9, 2023 GFA Job No. 22286 HRC Job No. 20220549

PREPARED BY:

1501 Cass Street Traverse City, Michigan 49506

ENGINEERING. ENVIRONMENT. EXCELLENCE. 616.454.4286 | hrcengr.com

Gourdie-Fraser, Inc.

123 West Front St, Traverse City, Michigan 49684

Versions:

Draft: March 18, 2023: Internal Review Draft: April 11, 2023: JPC Review Draft: May 4, 2023: GFA Review Draft June 14, 2023: Internal Review Draft: July 10, 2023: JPC Review Draft: August 1, 2023: Internal Review Draft: August 15, 2023: JPC Review Draft: September 1, 2023: GTCDC Review Final: October 12, 2023

CONTENTS

EXECUTIVE SUMMARY	vi
SECTION 1.0 — INTRODUCTION	1-1
SECTION 2.0 — WATER DISTRIBUTION	2-1
2.1 INTRODUCTION	
2.2 PROCEDURE	
2.2.1 Assumptions	
2.2.2 Model Calibration	
2.3 CONDITION ASSESSMENT	
2.3.1 Fire Flow Analysis	
2.4 CORRECTIVE ACTIONS RECOMMENDED	
2.4.1 Pressure District Isolation: Option 1	
2.4.2 System Connection: Option 2	
2.4.3 Water Main Replacement: Option 3	
2.4.1 Elevated Tank Rehab: Option 4	
SECTION 3.0 — STORM SYSTEM	
3.1 INTRODUCTION	
3.2 PROCEDURE	3-1
3.3 CONDITION ASSESSMENT	
3.3.1 Capacity Results	
3.4 CCTV	
3.5 ACTIONS REQUIRED FOR MAINTENANCE AND REPAIR	
SECTION 4.0 — SANITARY SYSTEM	
4.1 INTRODUCTION	4-1
4.2 PROCEDURE	4-1
4.3 CONDITION ASSESSMENT	4-2
4.3.1 Infiltration/Inflow Results	
4.3.2 Capacity Results	
4.4 REQUIREMENTS FOR ACCEPTANCE	
4.4.1 Sewer System Acceptance Procedure	
4.4.2 Accepted Sewer System Evaluation	
4.4.3 Sewer System Rehabilitation Options	
4.5 CCTV	
4.6 ACTIONS REQUIRED FOR MAINTENANCE AND REPAIR	

SECTION	5.0 — ROAD, SIDEWALK, AND PARKING AREAS	5-1
5.1	INTRODUCTION	5-1
5.2	SURFACE TYPES AND CHARACTERISTICS	5-2
5.3	ASSET RATING SYSTEM	5-2
5.4	FINDINGS AND OBSERVATIONS	
5.4.1	Roadway Conditions	
5.4.2	Parking Lot Conditions	5-4
5.4.3		
SECTION	6.0 — SYSTEM MAPPING	6-1
6.1	PROCEDURE	6-1
6.2	ASSUMPTIONS	6-2
6.3	DELIVERABLES	6-2
SECTION	7.0 — CAPITAL IMPROVEMENT PLAN	7-1
7.1	INFRASTRUCTURE ELEMENTS	7-1
7.2	PAVEMENT DETERIORATION CURVE	7-1
7.3	MIX OF FIXES	7-2
7.4	CAPITAL IMPROVEMENT PLAN DEVELOPMENT	7-4

FIGURES

Figure 1.1: Grand Traverse Commons Master Plan Boundary Map	1-2
Figure 1.2: GTC Utilities Map	1-3
Figure 3.1: Grand Traverse Commons Drainage Delineation	3-2
Figure 3.2: Grand Traverse Commons Drainage Area of Concern	3-3
Figure 3.3: Max Flow Calculation 1 Hour Storm	3-4
Figure 4.1: Location of Greatest Flooding Potential	4-4
Figure 5.1: GTC Study Area Overview	5-1
Figure 5.2: Image of Good Pavement with Rating of 9 on Red Drive	5-3
Figure 5.3: Image of Fair Pavement with Rating of 5 on Silver Drive	5-3
Figure 5.4: Image of Poor Pavement with Rating of 2 on 11 th Street	5-3
Figure 7.1: Pavement Deterioration Curve	7 -2

TABLES

Table 2.1: Calibration Groups	2-2
Table 2.2: Model Calibration Results	2-3
Table 2.3: Existing System Pressures	2-4
Table 2.4: Hydrant Survey Example Data	2-5
Table 2.5: System Valve Survey Example Data	2-6
Table 2.6: Water Model Results	2-9
Table 3.1: Storm Structure Survey Example Data	3-4
Table 3.2: Storm Sewer Survey Example Data	3-5
Table 3.3: Storm Catch Basin Survey Example Data	3-5
Table 3.4: Stormwater Program	3-7
Table 4.1: Rain Event Data	4-2
Table 4.2: Dry Weather Flow	4-3
Table 4.3: Peak Flow Per Rain Event	4-3
Table 4.4: Sanitary Structure Survey Example Data	4-5
Table 4.5: Sanitary Sewer Survey Example Data	4-7
Table 4.6: Sanitary Program	4-9
Table 5.1: Roadway Rating Summary	5-4
Table 5.2: Parking Lot Rating Summery	5-4
Table 7.1: Recommended Costs of Improvements for Water Distribution System	7 - 2
Table 7.2: Recommended Costs of Improvements for Sanitary/Storm Sewer	7-3
Table 7.3: Recommended Costs of Improvements for Roads	7-3
Table 7.4: Recommended Costs of Improvements for Parking Lots	7-3
Table 7.5: Water Main CIP	7-4
Table 7.6: Storm CIP	7-4
Table 7.7: Sanitary CIP	7-4
Table 7.8: Road CIP	7-5
Table 7.9: Parking Lot CIP	7-5

APPENDIX

Appendix A: Utility Maps Appendix B: Water Model Simulations Appendix C: Storm System Figures Appendix D: Sanitary System Figures Appendix E: Road Sidewalk and Parking Areas Appendix F: Utility, Road and Parking Lot LOS Maps Appendix G: Capital Improvement Combined Project Cost Breakdown

EXECUTIVE SUMMARY

The following report assesses the infrastructure within the Grand Traverse Commons, located within the City of Traverse City and Garfield Township Michigan. Analysis and justification for projects can be found within the corresponding sections of the report. This report provides a summary of projects deemed appropriate for construction to provide more dependable infrastructure within Grand Traverse Commons.

It has been determined that the majority of the sanitary, storm and water distribution utilities within Grand Traverse Commons are in working condition with some areas identified for rehabilitation. The construction activities required for rehabilitation do not always require open excavation. The capital improvement plan represents only replacing the utilities in situations where it is economically advantageous. Most of the Sewer rehabilitation should be covered under a single lining project for maximum cost benefit. This is represented in the project plan.

All water utility work determined to provide maximum benefit to the Commons water distribution infrastructure is outside the project limits of roadway deemed suitable for reconstruction. Aside from a few roadway crossings, the water main improvements will occur outside of the influence of the roadway. It is not economically beneficial to incorporate these projects into any roadway infrastructure improvements.

A GIS database was developed throughout the project to organize assets and their condition. Existing GIS data was merged from both Traverse City and Garfield Township; that data was expanded by digitizing available as-built plans and MISS DIG 811 data. Field and CCTV inspections investigated asset condition and discovered new sewer and water structures. This data was compiled into a file geodatabase and delivered to Traverse City and Garfield Township.

This infrastructure assessment and capital improvement plan provides the following:

- Mapping of all utilities and roadway/parking lot infrastructure focused within the Grand Traverse Commons Brownfield. Additionally, data from the entire Grand Traverse Commons boundary was incorporated as the area of influence for this study. See Figure 1.1 for boundary map from Grand Traverse Commons Master Plan
- Physical evaluation of the current level of service of utilities and roadway/parking lot infrastructure.
- Utility analysis including:
 - The current water pressure for users and opportunities to increase pressure during high usage.
 - o Predicted available water in case of fire and opportunities to increase available flow.
 - Predicted storm events and provides maximum predicted flow within the storm sewers.
 - Flow capacity of storm sewer and provides maintenance and rehabilitation recommendations.
 - o Infiltration and Inflow of storm water into the sanitary sewers.
 - Flow capacity of sanitary sewer and provides maintenance and rehabilitation recommendations.
- Condition assessment of roads and parking lots including asphalt and concrete evaluation.
- Cost breakdown for improvements identified.
- Project recommendations for greatest benefit to the public.

SECTION 1.0 — INTRODUCTION

Hubbell Roth & Clark Inc. (HRC) and Gourdie Fraser, Inc. (GFA) were tasked with assessing the following infrastructure within the Grand Traverse Commons. The existing Grand Traverse Commons and influence area was deemed the project limit, this was provided by the Joint planning Commission. **Figure 1.1** provides Map of boundary and jurisdictions from Grand Traverse Commons Master Plan.

Directions for this report was provided through meetings with the Grand Traverse Commons infrastructure study working group as follows: John Sych (Garfield Township), Shawn Winters (City of Traverse City), Jennifer Hodges (GFA), Randy Wilcox (HRC), Devon Munsell (HRC) and Karyn Stickel (HRC)

Grand Traverse Commons Infrastructure

≡ Background

HRC & GFA performed initial research on the Grand Traverse Commons system to assist with the mapping and inventory of assets. The resources reviewed include the 2021 Traverse City Water reliability study, Grand Traverse Commons Trip Generation Information, Current Site Map with utilities, Grand Traverse Commons Master Plan, Grand Traverse Commons District Plan, Sanitary Sewer Report for Minervini Group, Traverse City Stormwater Asset Management Plan, Traverse City Sanitary Sewer System Asset Management Plan, Kids Creek Subwatershed Action Plan, and previous construction plans/ as-builts within the boundary of Grand Traverse Commons.

■ Water Distribution

HRC & GFA were tasked with field locating and mapping all above ground assets. Inventory and condition assessment were taken for all mapped assets additional hydrant and pressure checks were performed at critical locations, and modeling was performed to ensure that the system is operating within EGLE parameters with respect to pressure and fire flow. Break data for the water distribution system retrieved from City and Township records is included in the GIS submittal. Gate wells (if present) were located and assessed.

■ Storm Sewer

Storm sewer structures were field located using GPS equipment and the condition was noted. Connectivity of the piping was determined where practical. For mapping the pipe diameter was based on record drawings with field verification when possible. CCTV was performed on sections of the system for evaluation of pipe condition.

■ Sanitary Sewer

Sanitary sewer structures were field located using GPS equipment and the condition was noted. Connectivity of the piping was determined where practical. For mapping the pipe diameter was based on record drawings with field verification when possible. Flow metering was completed to allow for infiltration and inflow analysis. CCTV was performed on sections of the system for evaluation of pipe condition.

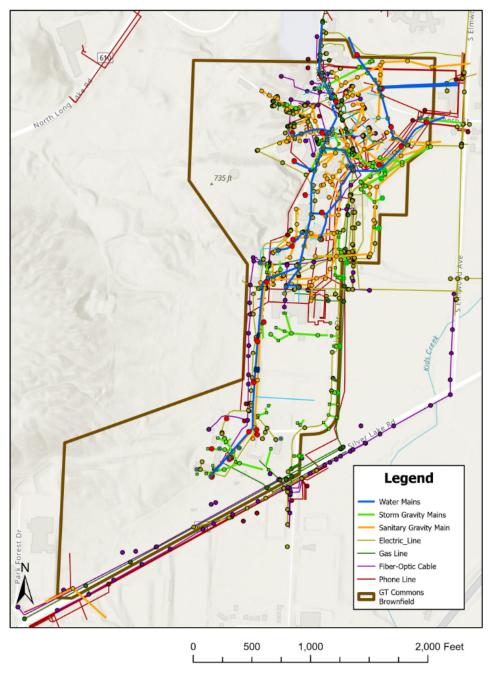
≡ Road, Sidewalk, and Parking Areas

As part of the infrastructure assessment, HRC & GFA evaluated the pavement conditions of the roads, sidewalks, and parking lot assets. The grades of various sidewalk landings and ramps were also field verified for compliance with the Americans with Disabilities Act (ADA). The condition assessment was completed by performing a visual survey of the existing pavement assets. The pavement assets consisted of concrete, asphalt, brick pavers, and gravel pavement types.

■ Other Utilities

All other utilities were mapped through the use of existing plans and MISS DIG locate requests.

A map of the Grand Traverse Commons Utilities is provided in **Figure 1.2.** This report summarizes the evaluations to plan for necessary improvements. These improvements can be included in a Capital Improvements Program or Plan (CIP). **Appendix A** provides individual maps of each utility addressed within this study. All utility data shown in appendix A has been provided to the City of Traverse City and Grand Traverse County through GIS in the form of a file geodatabase.


Figure 1.1: Grand Traverse Commons Master Plan Boundary Map

GT Commons Boundary

Figure 1.2: GTC Utilities Map

Grand Traverse Commons Utilities

SECTION 2.0 — WATER DISTRIBUTION

2.1 INTRODUCTION

The existing Grand Traverse Commons water system and water service is provided by the City of Traverse City. It operates under a single pressure district; controlled by the City of Traverse water storage tank located on Barlow St. Garfield Township owns and operates a water system currently adjacent to this area however is not currently connected.

HRC & GFA were tasked with mapping out the existing Grand Traverse Commons water distribution system and evaluating its level of service. Mapping was completed through field locating water distribution system assets along with photos and documentation were taken for all undocumented hydrants and curb stops within the system and can be accessed through the geo database provided to the County and City. The incorporation of record drawings and reports of the system were included in the GIS; current mapping additional includes as follows:

4"-Water Main: 56-Ft 6"-Water Main: 3,945-Ft

8"-Water Main: 317-Ft

10"-Water Main: 2,828-Ft

12"-Water Main: 3,088-Ft

Hydrants: 53-Count

System Valves: 57-Count

Lateral Line: 4,008-Ft

Water Main Casing: 197-Ft

2.2 PROCEDURE

The system was analyzed using a computer model of the water distribution system. All the larger system water mains (6-inch to 12-inch), bypass valves, well sites, and storage facilities were input into the computer model to simulate existing distribution system hydraulics. The developed model is a schematic of the actual system and should be utilized as a tool to simulate actual system operations and reactions. The following results were obtained based on the calibrated existing and future improvements models.

The model simulates the entire Traverse City water distribution system to analyze the Grand Traverse Commons portion of the entire system. See Appendix B-1 for a map of the entire system. A design guideline was created from the recommendations within Recommended Standards for Waterworks – Great Lake – Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers (Ten States Standards) and 2018 Michigan Plumbing Code. These design guidelines are as follows:

- 1. Ten States Standards:
 - a. 35 psi minimum working pressure with 60-80 psi preferred range.
 - b. Minimum 20 psi fire flow pressure.
- 2. 2018 Michigan Plumbing Code:
 - a. Minimum 40 psi static pressure.
 - b. Maximum 80 psi pressure at buildings.

2.2.1 Assumptions

It is important when developing a computer model to create the model based on the intended purpose of the study. Depending on the magnitude of the study, assumptions, and simplifications are necessary. The purpose of the study validates the assumptions and simplifications made. Therefore, based on the purpose and magnitude of this study, the following additional assumptions/model selections were made:

- Model selection: Hazen-Williams equation was used for calculations.
- Assumption: initial Hazen-Williams roughness value (C-factor) for each pipe segment was based on pipe age and material. The calibration process refines this C-factor.
- Assumption: losses occurring at bends and elbows are ignored.

2.2.2 Model Calibration

The existing hydraulic model has been calibrated and tested by analyzing physical hydrant flow test to the anticipated flows from model simulation. Pipes in this model were separated into different distinct groups, see **Table 2.1** and the C factor was adjusted to best fit the hydrant flows and **Table 2.2** presents the results of the model calibration.

Calibration Group	Pipe Installation	Size	Normal Range ¹	C Factor
1	1965 and older	8-inch and smaller	21 - 49	35
2		12-inch and larger	39 -71	45
3	1965 to 1980	8-inch and smaller	30-58	50
4	1905 10 1900	12-inch and larger	48-78	60
5	1980 to 2000	8-inch and smaller	59-90	80
6	1900 10 2000	12-inch and larger	58-107	85
7	2000 to 2010	8-inch and smaller	83-106	95
8	2000 10 2010	12-inch and larger	97-120	110
9	2010 to 2020	8-inch and smaller	100-133	120
10	2010 10 2020	12-inch and larger	112-141	130

1. Water Distribution Modeling, T. Walski, D.V. Chase and D. Savic. 2001

Table 2.2 Model Calibration Results

		Gauge		Flow		Hydrant Tes	t		Model Simulat	ion
Location Description	Gauge Hydrant ID	Hydrant Model Node	Flow Hydrant ID	Hydrant Model Node	Static (psi)	Residual (psi)	Fire Flow (gpm)	Static (psi)	Residual (psi)	Fire Flow (gpm)
Pine and Seventh	84	J-T237	83	J-T272A	55	49	961	55	49	931
Cass and Seventeenth Alley	156	J-T467	530	J-T465	55	49	859	55	51	843
305 West Front	68	J-T052	67	J-T053A	63	50	1,664	64	58	1,599
Front and Boardman	172	J-T028	171	J-T171	73	60	2,190	73	58	2,222
Randolph and Maple	12	J-T011	11	J-T014A	65	62	1,488	65	59	1,629
710 Carver	730	J-T447B	305	J-T447C	53	38	1,358	61	38	1,041
800 Hastings	449	J-T324	380	J-T350	58	46	1,358	61	46	1,335
Third and Spruce	997	J-T207	734	J-T207A	57	54	1,215	57	55	1,261
Front and Elmwood	997	J-T234A	36	J-T234B	55	42	2,148	56	41	2,445
Union and Thirteenth	144	J-T315A	136	J-T315B	55	35	1,358	58	33	1,385
Gray and Commons	790	J-41	1011	J-166	39	33	1,052	38	33	1,232
Aero Park	655	J-147	656	J-T220	60	44	1,664	60	40	1,785
M-72 Moorings (PD-2, PD-3, PD-4)	735	J-T560	974	J-T497	68	18	1,920	70	17	1,995
Historic Barns Park	1051	J-74	983	J-12	36	18	960	35	20	856
NW side of Northwest Educational Services (Arnell Engstrom School)	977	J-73	978	J-72	40	18	960	37	20	971

2.3 CONDITION ASSESSMENT

Currently the Grand Traverse Commons experiences low pressure due to the elevation of the Commons within the current pressure zone. In addition, the Grand Traverse Commons contains multiple story complexes that further decrease the available pressure on the top stories of these buildings. **Table 2.3** provides the existing pressures within the Grand Traverse Commons. Total average daily pumpage was obtained from historical water treatment plant monthly operating reports and daily water usage. Supervisory Control and Data Acquisition (SCADA) data were made available by the City of Traverse City. This provided booster and pump station information and tank level information. This data analysis was performed for the City of Traverse City 2021 Water Reliability Study and included average demand within the Grand Traverse Commons used within this report.

Assets were field located and inspected the remaining of the system mapping was completed through Township and City records. **Table 2.4 & 2.5** Provides examples of items noted during field data collection. 52 hydrants and 57 mainline system valves were surveyed and are included as data within the GIS deliverable.

Grand Traverse Commons Pressure Range (psi)						
	Average Day Demand ¹		Maximum Day Demand ²		t Hour Mand ²	
Min	Max	Min	Max	Min	Max	
42	51	37	46	32	41	

Table 2.3 Existing System Pressures.

Notes:

1. Average day initial conditions with tank levels at average operating levels (Barlow Tanks 28ft, Wayne Hill 12-ft)

2. Maximum day and peak hour demand simulated at minimum operating levels (Barlow Tanks 24-ft, Wayne Hill 7-ft

See appendix A-2 for system pressure for max day demand.

Low pressure and fire flow has been experienced and documented within the Historic Barns fire suppression located at the south end of the project boundary. Further hydrant tests have been completed and are presented in **Table 2.2.** These tests confirm the low pressure. Hydrant tests performed did not show the same low flow as the Historic barns fire suppression. Low flow test could be an outlier as there are a lot of variables in the timing of water demand, tank levels, pumps running vs not. Further testing of Historic Barns fire suppression is recommended. Improvements covered within this study are anticipated to increase pressure and fire flow within this area.

Table 2.4 Hydrants Survey Example Data

OBJECTID 1	48
FACILITYID	40 WHYD-2024
	-
Project Number	22286
Project Name	commons utility collection
Inpsection Date	2022-10-25 18:22
Plan Sheet Number	
Hydrant Number	
Contractor	
Inspector_Name	Nate Dale
Manufacturer	EJW
Туре	223-97
Main Valve Opening	
(MVO)/Valve	
Washer	
Inlet Size	
Inlet Type	
Operating Nut	Pentagon
No of Nozzles	3
Hose Outlet-Nozzle Size	2
Thread Type	
Pump Outlet-Nozzle Size	4
Bury	
Line Static Pressure	45
Location Description	intersection of silver st and eleventh st
Condition	
Position source type	Integrated (System) Location Provider
Receiver Name	Samsung SM-T390
Latitude	44.75584497
Longitude	-85.64117664
Altitude	159.9958473
Horizontal Accuracy (m)	0.012214445
Vertical Accuracy (m)	0.017509563
Fix Time	2022-10-25 18:21
Fix Type	GPS
Correction Age	
Station ID	
Number of Satellites	
PDOP	
HDOP	
VDOP	
Direction of travel (°)	64.61612701
Speed (km/h)	1.8777E-05
Compass reading (°)	135.4287313
Average Horizontal Accuracy (m)	
Average Vertical Accuracy (m)	
Averaged Positions	
Standard Deviation (m)	

OBJECTID 1	16
OBJECTID	5
FACILITYID	WCB-20005
Project Number	22286
Project Name	commons utility collection
Inpsection Date	2022-10-20 14:05
Plan Sheet Number	2022-10-20 14.03
Valve Number	5
Contractor	5
Inspector Name	Nate Dale
Valve Service Type	Domestic
Valve Size	Domestic
Valve Depth	
Location Description	north side of building
Valve Condition	
Valve Type	Box
Box or Well Condition	4
Operating Nut Type	Square
Service Address (if lead)	206
Position source type	Integrated (System) Location Provider
Receiver Name	Samsung SM-T390
Latitude	44.74812595
Longitude	-85.64780806
Altitude	169.7620014
Horizontal Accuracy (m)	0.019974863
Vertical Accuracy (m)	0.032269787
Fix Time	2022-10-20 14:04
Fix Type	GPS
Correction Age	GF3
Station ID	
Number of Satellites	
PDOP	
HDOP	
VDOP	
Direction of travel (°)	100.2675934
Speed (km/h)	2.52741E-05
Compass reading (°)	203.4345789
Average Horizontal Accuracy (m)	
Average Vertical Accuracy (m)	
Averaged Positions	
Standard Deviation (m)	
NotesFromField	206
NOLESFICIIIFIEIU	200

Table 2.5 System Valve Survey Example Data

2.3.1 Fire Flow Analysis

In addition to providing normal flows, the water distribution system must be capable of supplying adequate fire flows at all locations throughout the Commons. The fire flow analysis is typically a tedious process that requires the water system modeler to iteratively apply fire flow demands at selected nodes within the model. Most water system models, including WaterGEMS, have a Fire Flow Analysis Module to simplify the process of the fire flow analysis. The Fire Flow Analysis Module gives the modeler the ability to select all or a portion of the available nodes for which fire flows are to be determined. The Module automatically performs an iterative analysis of each selected node to determine the maximum available fire flow available without dropping the lowest residual pressure in the system below 20-psi. It is important to note that the Industry Standard is to provide fire flow during maximum day demand conditions and with a residual pressure in the system of at least 20-psi. Typical fire flow requirements are specified by organizations such as the American Water Works Association (AWWA) and the Insurance Services Office (ISO). Fire flow requirements will vary by community based on density, land use, building size and materials of construction, and distance between buildings. Fire flows can be provide either through a combination of storage or pumping from the booster pumps. The City's minimum fire flow recommendations are summarized as follows:

- \equiv Single and Multi-family dwellings less than 3,500-sf: 1,000-gpm (2 hours)
- Apartment Buildings & Commercial w/fire suppression: 1,500-gpm (2 hours)

Most of the Grand Traverse Commons can be considered apartment buildings or commercial with fire suppression and the entirety of the system should allow for 1,500-gpm fire flow. Based on the fire flow modeling results, a majority of the system fails to meet the minimum recommended available fire flow. See appendix A-3 for results from model. Recent testing by AFP Specialties, Inc, of the interior fire pump within the historic barns located at the southern end of the Grand Traverse Commons provided results of 380 GPM fire flow at 10 psi. Documentation from Grand Traverse Metro Fire department cites the facility is not in compliance.

2.4 CORRECTIVE ACTIONS RECOMMENDED

The primary goal for improvement is to increase system pressure within the Grand Traverse Commons, a secondary goal that was determined to be necessary through this evaluation is an increase in available fire flow within the Grand Traverse Commons. Three corrective actions were assessed to solve the inadequacies of the system with respect to the design guidelines. Below provides an explanation of each solution. **Table 2.6** provides all combinations of project implementation and their effects on fire flow and system pressure.

2.4.1 Pressure District Isolation: Option 1

Construction of a new 8-in Pressure Reducing Valve (PRV) at the location of the abandoned Red Drive Booster Station to down feed from the Garfield Township Munson Pressure District (HGL 975-ft) to PD-9 (HGL = 825-ft), sourced from Garfield elevated storage tank. The estimated water age in this proposed district would increase due to the long travel times from the City's system to Garfield Township and the eventual back feed into the Commons and then to the city. Reduction in pressure to 78 psi from the available pressure at the PRV of 90 psi will be required. Five check valves would be required to be installed to isolate the Commons from PD-1. This solution would require metering as flow would be supplied from Garfield Township.

This solution will solve all low-pressure problems within the commons and greatly increase fire flow availability. However, further improvements will be required to increase the available fire flow to recommended Traverse City standards.

2.4.2 System Connection: Option 2

Connection to PD-GT Stone Ridge (HGL 875-ft) along Frank Road requiring 1,350-ft of 12" water main construction. Due to the losses within the system, water will enter the Commons at a desired pressure range and therefore no PRV will be required. The same five check valves will need to be installed as in the previous improvement. This is to isolate the Commons. This will avoid loss of pressure to the rest of the existing pressure district. This solution would require metering as flow would be supplied from Garfield Township. 50' of open cut road reconstruction required for crossing of Frank Road and 75' of Jack and Bore required for crossing of Silver Lake Road.

Addition of PRV and meter as outlined in Option 1 can be installed in addition to Option 2 for redundancy within the Commons system.

2.4.3 Water Main Replacement: Option 3

This improvement utilizes an increase in distribution mains diameter and provides a significant increase to available fire flow. Specifically, the 6-in mains were the targets for this improvement and the capital improvement figure presents the determined sizing changes for optimal results. This improvement will only increase the system pressure slightly and should therefore be considered in congruent with one of the other presented improvements.

2.4.1 Elevated Tank Rehab: Option 4

This improvement utilized the existing elevated storage tank located on Gray Drive. This option provides the greatest increase in available fire flow. However, this fails to increase pressure significantly throughout the system. Construction of a new elevated tank would allow for greater elevation head. However, cost would significantly increase and would not provide as great of a cost benefit as the other options provided. For this reason, this option should be compared with the option of replacing the 6-inch water mains within the system. Inspection of existing Elevated storage tank is advisable for cost comparison with increasing watermain diameter.

Scenario	Min Fire Flow Available (gpm)	Min Pressure under MDD Conditions (psi)	Max Pressure under MDD conditions (psi)	Cost
Existing system	680	35	46	\$0
PRV (1)	956	72	79	\$350,000
System Connection (2)	756	69	77	\$465,000
Increasing pipe DI (3)	1,059	35	46	\$405,000
Elevated Tank Rehab	1,150	37	47	NA
Option 1&2	999	73	79	\$815,000
Option 1&3	1,360	72	79	\$755,000
Option 2&3	1,876	69	77	\$870,000
Option 1,2&3	2,247	73	79	\$1,220,000

Table 2.6 Water Model Results

Notes:

1. MDD = Max Daily Demand

2. Existing system depicted the worst available FF / Pressure located at Historic barns at the southernmost part of the system (Hydrant 983)

3. Cost Savings for combination of Option 1&2 due to overlap in check valve installation work.

The best results shall be achieved through implementation of all three options. However no current funding is established, the recommendation of project priority is based on amount of funding allocated to these projects. Under low funding (approximately \$500,000) it is recommended for the completion of Option 1. This will provide the greatest benefit to pressure and fire flow. With greater funding (approximately \$1,000,000) Option 2 & 3 provide the greatest benefit in unison and are the recommended options.

SECTION 3.0 — STORM SYSTEM

3.1 INTRODUCTION

Currently records on the Commons storm system are limited. Inspection of all storm sewers and structures is required to gain a full understanding of network level of service and operations. Age and insight from the management team would suggest that the system needs assessing and restoration.

On December 12, 2022, representatives from Gourdie-Fraser, Inc inspected six (6) stormwater structures. HRC also discussed the stormwater system with the City to gain general knowledge on the system and standard operation and maintenance procedures. In addition, an onsite meeting completed on September 1, 2023, with representatives from the Minverini Group, Grand Traverse County and Drain Commission and GFA. The purpose of the meeting was for identify and discuss areas that have experienced known historical problems that warrant additional research and investigation.

Full fieldwork inspection data and photos can be accessed through the Grand Traverse Commons GIS. Photos from inspections can be viewed through GIS. The GIS was provided to the City of Traverse City and Grand Traverse County through a file geodatabase.

This Section additionally evaluated the condition and capacity of the existing Storm Drainage system within the Grand Traverse Commons.

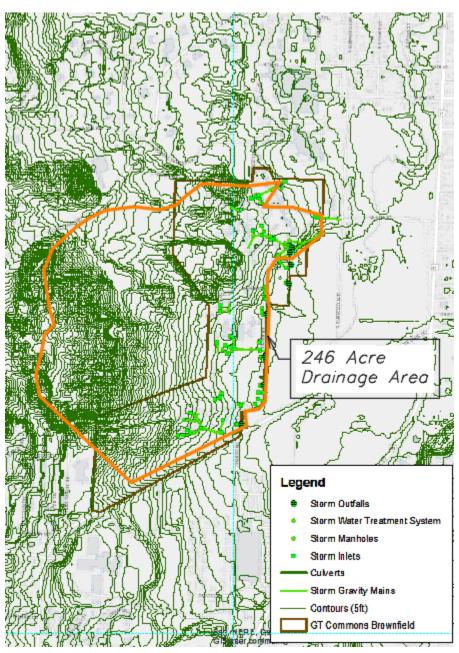
Given the recent increase in the frequency of significant storms further inspections and improvements are recommended.

3.2 PROCEDURE

31 storm sewer structures were field located and inspected the remaining of the system mapping was completed through Township and City records. Additionally, 71 catch basins were surveyed, sewer gravity mains were inspected at the Manhole during structure surveys. All data has been incorporated into the GIS deliverable. Data tables of structure condition provided in **Appendix-C-1**.

(Table 3.1 - 3.3) Provides an example of items noted during field data collection.

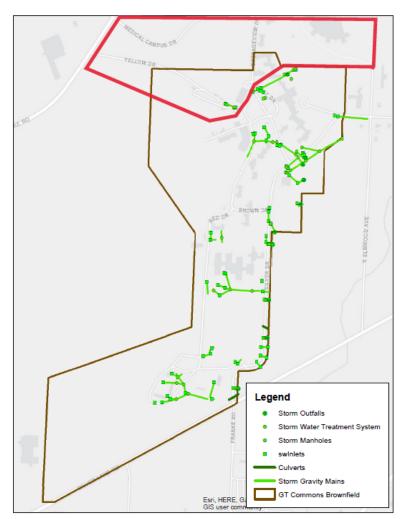
Maximum flow was calculated through delineation of rainfall area to assess capacity of the system using the rational method assessing the maximum flow through the Silver Drive ditch. Current storm sewer reaches are relatively short and provide drainage for small areas before discharging into the Kids Creek tributaries and therefore will need to be assessed individually based on areas of concern.


3.3 CONDITION ASSESSMENT

3.3.1 Capacity Results

Most of the storm system within the Commons discharges directly to the Silver Drive ditch. The capacity of the system should be calculated as the capacity of this Kids' Creek tributary. Currently the rain garden on Cottage View and Red Drive mitigate the high flows into Kids' Creek from the Grand Traverse Commons.

The maximum flow through the Silver Drive ditch leading to Kids Creek was calculated through delineation of the current watershed. The delineation is provided in **Figure 3.1** and calculations of maximum flow is provided in **Figure 3.2** flows through the Commons storm system are greatly influenced by the green space west of the Commons area and therefore should account for higher flows. During a 1 hour 100 year storm event the ditch east of the Grand Traverse Commons will incur 148.7-cfs flow this also contributes to the greater flow within the Kids Creek.



Of particular note is the area of former State Hospital Grounds which is of most important to understand and improve than the southern portions of the boundary limits. This area is the most densely developed with extensive

impervious infrastructure including buildings, parking lots and motorizing and non-motorized infrastructure both contributing to and subject to impacts from both above and below ground water. The potential impacts from flooding, seepage and runoff to private property are extremely concerning which is currently managed by aged, undersized and ill maintained surface and subsurface stormwater infrastructure. This area should have a greater priority for capital improvement planning than other areas. This area is serviced by what is referred to as Tributary "AA" and is depicted below in Figure 3.2 in red.

Historical records and observations during heavy rain events have been documented with recent event of note occurring in 2020. The neighborhood surrounding the Munson Medical Center campus was particularly hard-hit by flooding due to the overflow of Kids Creek and other tributaries. Several areas of The Village at Grand Traverse Commons experience flooding as streams and other watersheds in the adjacent woodlands rushed downhill and converged on campus roads, funneling into a flood that poured down Red Drive in front of Left Foot Charley.

Figure 3.2 Grand Traverse Commons Drainage Area of Concern

Figure 3.3 Max Flow Calculation 1 hour Storm

Rainfall intensity for Grand Traverse Commons 1 hour event retreved from NOAA ATLAS 14: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=pa

1 HOUR RAINFALL EVENT				
l ₂	1.1			
I ₅	1.4			
I ₂₅	2.02			
I ₁₀₀	2.62			

Q=CIA

LAND TYPE	Runoff Coef	AREA (ft ²)	AREA (Acres) (A)	C*A	Q ₂	Q ₅	Q ₂₅	Q ₁₀₀
Pavment	0.9	1073050	24.633838	22.17045				
Residential	0.4	53652	1.231680	0.49267	62.41139646	79.43268641	114.610019	148.6526
Wooded	0.1	8584405	197.070822	19.70708	62.41139646			
Appartment	0.55	1137900	26.122590	14.36742				
				Max (cfs)	62.41139646	79.43268641	114.610019	148.6526

OBJECTID *	1
ASSETID_13	STM-163001
AssetOwner	Traverse City
DateSurveyed	12/12/2022 18:08
Surveyed_By	Gourdie-Fraser, Inc.
Located	Found
Inspection_Status	Descent Inspection
StructureType	Manhole
Structure Location	Light Highway
Wall_Material	Concrete (reinforced)
StructureCondition	Fair
StructureConditionComment	<null></null>
Cover_Type	1040 Cover B (Vented)
Wall_Diameter_FT	48
Direction of Flow	N
Step_Number_89	3
ObservedProblem	No
ObservedProblemComment	<null></null>
Top of Cone to Casting_FT	14
Notes	<null></null>

	1
OBJECTID	
Asset ID	STP-4350
Surveyed By (1)	Gourdie-Fraser, Inc.
Date	2022-12-09 14:49
Cardinal Flow Direction	E
Туре	Storm Gravity Main
US Structure ID	CB-2697
US Diameter (in)	12
US Material	Reinforced Concrete Pipe
US Rim to Invert (ft)	2.220000029
US Flow Status	Low
Traps	
DS Structure ID	TRT-17
DS Diameter (in)	12
DS Material	Reinforced Concrete Pipe
DS Rim to Invert (ft)	2.349999905
DS Flow Status	Low
Drop Present	No
Lower Drop Invert (ft)	
Drop Туре	
Is Flow Arrow Correct?	
Data Collected	No
Comments	

Table 3.2 Storm Sewer Survey Example Data

Table 3.3 Storm Sewer Survey Example Data

OBJECTID	1
ASSETID_13	CB-2701
AssetOwner	Traverse City
DateSurveyed_8	2022-12-21 20:41
Surveyed_By_1	GFA
Located	Fnd
Inspection_Status_36	SD
StructureType	INCB
StructureLocation	D
Wall_Material78	PP
StructureCondition	Fair
StructureConditionComment	
Cover_Type_44	Bhive
Wall_Diameter_FT	30
DirectionofFlow	
Step_Number_89	
ObservedProblem	Υ
ObservedProblemComment	needs cleaned
TopofConetoCasting_FT	
Notes	

3.4 CCTV

Due to limited information on the level of service of the Commons stormwater system. Two storm sewer reaches in locations deemed critical were CCTV'd for this project full CCTV reports can be found in **Appendix-C-2**. Video has been provided with GIS data. It is recommended to continue to CCTV and document the condition of the storm sewer. **Appendix C-3** provides a map of sewer CCTV'd within this project.

3.5 ACTIONS REQUIRED FOR MAINTENANCE AND REPAIR

Subsurface: It is assumed the storm system needs maintenance/repair. Due to limited records, currently there is very little reliability data on the condition or active status of the system. A full inspection of all subsurface storm structures and CCTV of storm sewer gravity mains should occur. Current CCTV has shown existing storm sewer to be structurally sound and rehabilitation cost within the capital improvement plan reflects this. More extensive research and field investigation is required for greater confidence of system mapping and cost of repair and improvements. All storm infrastructure that was successfully located within this study has been inventoried and added to the GIS.

Surface: Due to limited records, currently there is very little reliable data on the condition or active status of the system. Perhaps of more importance is an inventory and analysis of the surface water infrastructure servicing the northern boundary along Red Drive. This evaluation should include coordination with Munson, GT Watershed, and Grand Traverse County Drain Commission to obtain additional information on the existing storm systems in place, hydraulic modelling to evaluate integrity at varying storm events and identify improvements to improve function and prevent future flooding.

The 2017 Traverse City Stormwater Asset Management Plan was reviewed in the assessment of the Grand Traverse Commons stormwater system. The Level of service and long-term needs recommendations for the city were used as the standards required for the Grand Traverse Commons storm system to meet. It is recommended to clean storm sewers every 5 years. This process should also include inspection and televising where appropriate. These ongoing management practices are provided in **Table 3.2.** The quantity provided is the recommended yearly quantity to be cleaned and inspected to address all sewers and structures within a 5-year period. The cleaning schedule should be adjusted to consider the actual conditions in various parts of the storm system; routine cleaning can result in over-maintenance of the system. In most storm systems, some sections do not require frequent cleaning while other sections may require cleaning on a more frequent basis if they are susceptible to blockages. Information from the inspection program should be used to help identify problem areas in the gravity sewer system and related structure, quantify defects and problem areas, and develop a preventive maintenance sewer cleaning program based on actual conditions in a particular stormwater system.

Table 3.4 Stormwater Program

Procedure	Quantity	Unit Cost	Annual Cost
Sewer Cleaning	654-ft	\$3.50 / foot	\$2,300
Structure Cleaning	21 each	\$300 / each	\$6,300
Sewer Inspection (CCTV)	654-ft	\$5 / foot	\$3,300
Structure Inspection	21 each	\$100 / each	\$2,100
Notes:			

1. Annual cost rounded to nearest \$100

The current recommendations outlined in the Kids Creek Restoration Study have already been implemented within the Grand Traverse Commons.

SECTION 4.0 — SANITARY SYSTEM

4.1 INTRODUCTION

HRC & GFA were tasked with reviewing The Grand Traverse Commons' existing wastewater facilities. This work included assessments of the Commons collection system (Manholes and piping network). This report summarizes the inspections and evaluations to plan for necessary improvements as part of the Grand Traverse Commons' Capital Improvements Program (CIP).

The Sanitary Manholes within the Grand Traverse Commons were field located and inspected assessing all structural, operational and infiltration/inflow of each Sanitary Manhole providing appropriate improvements as addressed in section 4.4.

Full fieldwork inspection data can be accessed through the Grand Traverse Commons GIS. Photos from inspections can be viewed through GIS. The GIS was provided to the City of Traverse City and Grand Traverse County through a file geo database.

This Section additionally evaluated the condition and capacity of the existing sanitary system within the Grand Traverse Commons. Currently much of the flow within the system is due to inflow and infiltration and can be mitigated through recommended rehabilitation activities.

Sanitary Sewer Overflows (SSOs) are prohibited by EGLE and their standards typically require that communities be able to convey wet weather flows generated by a 25-year 24-hour design storm (under growth conditions, normal soil moisture, and average rainfall distribution). An analysis by EGLE indicates a community implementing this design will average less than one overflow every 10 years. Therefore, a 10-year 1-hour peak storm (1.49 inches per hour peak intensity) event was used as a conservative approximation of the estimated design peak hourly flow since this type of event produces a greater peak sewer flow rate than a 25-year, 24-hour event with a design storm (Huff Quartile 2 and 10% probability) which produces a peak intensity of approximately 0.8 inches per hour.

Given the recent increase in the frequency of significant storms and potential increase in flow from residents of the Grand Traverse Commons area rehabilitation work to minimize infiltration and inflow (I&I) to avoid potential Sanitary Sewer Overflows (SSOs).

4.2 PROCEDURE

The Sanitary system was field located and added to a GIS Database. Portions of the system were televised to determine location of excessive damage and overall system condition, and evaluation of flow to approximate infiltration and Inflow (I&I).

To collect existing flow data, HRC & GFA worked with the City to install a flow meter at SSM-1651 located approximately 400 feet south of the S Elmwood Drive/Medical Campus Drive intersection. The diameter of the sanitary sewer at the location of metered flow is 10-in pipe.

A rain gauge was also installed at the City fire department for the duration of this study and was used to develop unit hydrographs for dry and wet weather conditions. The attached **Appendix D-1** depicts the location of meter commons sanitary system and location of rain gauge.

4.3 CONDITION ASSESSMENT

4.3.1 Infiltration/Inflow Results

A rain gauge (rented from Hach) was installed at the City's Fire Station at 500 W Front St. Data was collected from August 2022 through February 2023. Within that time, six "significant" rain events were recorded. "Significant" rain events for this evaluation are defined as having total rain greater than 0.5 inches, or, where there was a noticeable peak in the meter data. **Table 4.1** lists the rain event data for each event including total rain, duration, peak intensity, and resultant recurrence interval of the rainfall rate. The recurrence interval is approximate and is based on the duration and total rain in reference to the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 rainfall recurrence intervals for the City of Traverse City area. The rain event hyetographs are provided in **Appendix D-2**: Rainfall Hyetographs. **Appendix D-3** also includes NOAA Atlas 14 table of rainfall recurrence intervals.

	Rain (in)							
Date	Duration (hours)	Peak Intensity (in/hr)	Total Rain (in)	Recurrence Interval				
08/01/22	2.00	0.77	0.86	< 1-Year				
08/03/22	9.00	0.88	1.15	< 1-Year				
08/07/22	15.00	0.44	0.86	< 1-Year				
08/08/22	3.00	0.55	0.99	< 1-Year				
09/11/22	11.00	0.50	1.21	< 1-Year				
11/13/22	15.00	0.16	0.46	< 1-Year				
11/23/22	5.00	0.11	0.22	< 1-Year				
12/15/22	4.00	0.14	0.33	< 1-Year				
01/16/23	6.00	0.04	0.16	< 1-Year				
01/19/23	11.00	0.09	0.23	< 1-Year				
02/07/23	6.00	0.09	0.30	< 1-Year				
02/09/23	12.00	0.17	0.66	< 1-Year				
Max	15	0.88	1.21	< 1-Year				
Min	2	0.04	0.16	< 1-Year				
Average	9	0.32	0.62					
Total Rain								
During			10.00					
Monitoring			10.98					
Period (in)								

Dry weather infiltration was evaluated by determining the dry weather flow (DWF) for each District. DWF is normal sanitary loading. Sanitary loading comes from a variety of sources such as residential, commercial, industrial, and recreational uses. For the Grand Traverse Commons in this study, the DWF was determined by taking the average of several typical weather weeks. Copies of the hydrographs that illustrate the dry weather flow calculated for each

meter are shown in **Appendix D-4**: Dry Weather Flow Hydrographs. **Table 4.2** lists the various calculated values of dry weather flow for The Commons. Since sewer infiltration is proportional to the sewer wall surface that is exposed to the ground, the most common way to express this is in terms of the flow rate per surface area (typically gallons per day per inch diameter per mile or gpd/ inch-mile (gpdim). A commonly acceptable rate of sewer infiltration for new sewers is 200 gpdim.

	Monday Tuesday Wednesda		Wednesday	Thursday Friday		Saturday	Sunday
Flow	wonuay	Tuesuay	weunesuay	Thursday	гпиау	Saturday	Sunday
Max (mgd)	0.0237	0.0229	0.0230	0.0210	0.0264	0.0221	0.0208
Min (mgd)	0.0048	0.0056	0.0062	0.0056	0.0068	0.0062	0.0055
Avg (mgd)	0.0144	0.0138	0.0145	0.0133	0.0152	0.0133	0.0132

Table 4.2 Dry Weather Flow

Wet weather infiltration and inflow are directly dependent upon rain and are commonly referred to as Rainfall Dependent Infiltration and Inflow (RDII). Rainfall-dependent inflow is considered to be a wet weather phenomenon that results from stormwater runoff entering a sewer system directly through foundation drains connected to sump pumps, openings in manholes located close to ground surfaces, leaks in sewer pipes, connected roof drains, etc. The term RDII includes the component of wet weather infiltration, however, in many sanitary sewer systems, the contribution from inflow (direct runoff) is substantial and often times significantly overshadows the contribution of wet weather infiltration. The wet weather infiltration component of RDII is not distinguishable and because the inflow component of RDII is the primary contributor, RDII is sometimes referred to as "inflow" only. The peak flow and inflow for each rain event is listed in **Table 4.3**.

event #	date	Peak I	Total	Duration	Inflow (mgd)	Peak Flow per Event
1	8/1/2022	0.86	0.86	1	0.04	0.06
2	8/8/2022	0.55	0.97	2.5	0.03	0.05
3	11/13/2022	0.16	0.33	4	0.01	0.02
4	12/15/2022	0.17	0.33	3	0.02	0.02
5	1/3/2023	0.15	0.22	2.5	0.01	0.02
6	1/19/2023	0.09	0.43	8.5	0.01	0.02
7	2/7/2023	0.14	0.29	3.5	0.02	0.03
8	2/9/2023	0.18	0.54	5.5	0.02	0.03

Table 4.3 Peak Flow Per Rain Event

The estimated rate of inflow was determined by fitting the peak wet weather flow and data with a logarithmic trend line and the line is then extended out to the desired storm intensity. The peak intensity for the design rainfall event is according to the NOAA Atlas 14 for a 10-yr, 1-hour intensity of 1.65-in/hr, The inflow and peek flow for this event was calculated to be Inflow of **0.048-mgd** and a peak flow of **0.081-mgd**. The estimated peak inflow was divided by the population per District yielding the gallons per capita per day "gpcd" **Appendix D-5** shows correlation and prediction curve for future storm events.

4.3.2 Capacity Results

Utilizing the City of Traverse City GIS and the GIS data acquired within this project the areas of greatest flooding were determined with respect to subsurface infrastructure. This evaluation did not account for above ground surface conveyance. This analysis accounted for pipe size, slope, and predicted flows. It was determined that the worst reach directly servicing the Grand Traverse Commons to be SSGM-9473. This pipe reach connects the manholes SSM-1683 and SSM-1648. Maximum flow through this portion of the system utilizing Manning's equation assuming full pipe gravity flow is 0.462 million gallons a day. **Figure 4.1** provides the location where conditions including slope, material, flow and pipe diameter provides greatest flooding potential within the system.

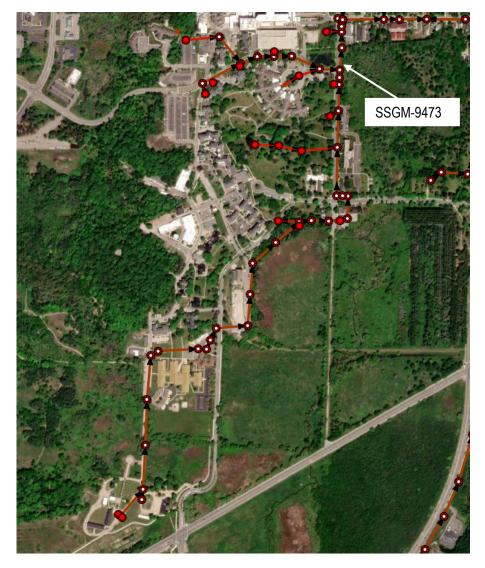


Figure 4.1 Location of Greatest Flooding Potential

OBJECTID	1
Asset ID	SSM-1662
City	tc
Street	silver st
Date	2022-11-09 18:31
Surveyed By	Gourdie-Fraser, Inc.
Weather	Light Rain
Inspection Status	Descent Inspection
MH Use	Sanitary
Location Code	Parking Lot
Surface Type	Asphalt
Rim to Grade (in)	
Cover Material	Iron
Cover Type	Solid
Cover Vent Hole Number	
Cover Shape	Circular
Cover Size (in)	24
Cover Size Width (in)	26
Cover Frame Fit	Good
Cover Condition	Corroded (pitted)
Evidence of Surcharge	Yes
Frame Material	Iron
Frame Condition	Corroded
Frame Offset Distance (in)	0
Frame Seal Inflow	Infil Weeper
Frame Seal Condition	Mortar Seal Cracking
Chimney Present	Yes
Chimney Material	Brick and Block
Chimney I/I	Infil Weeper
Chimney Height to Rim (ft)	12
Chimney Condition	Collapse/Missing
Cone Type	Conical centered
Cone Material	Concrete (precast)
Cone Condition	Sound
Wall Diameter (ft)	48
Wall Material	Concrete (precast)
Wall Condition	Sound
Bench Present	Yes
Bench Condition	Heavy Ragging
Channel Installed	Yes

Table 4.4 Sanitary Structure Survey Example Data

Channel Material	Concrete (cast in place)
Channel Condition	Heavy Ragging
Step Number	2
Step Material	Metal
Step Condition	Corroded
Sump Present	No
Sump Depth (ft)	
Overall MH Condition	Poor
Rehab Status	Repairs/Maintenance Needed
Rehab Structural	Reconstruct Chimney_pave
Rehab I/I	
Rehab O&M	Clean Manhole_Vactor
Rehab Notes	
Problem Observed	
Comments	

Table 4.4 Sanitary Structure Survey Example Data Count.

OBJECTID	3		
AssetID	SSGM-8235		
Surveyed By	Gourdie-Fraser, Inc.		
Date	2022-11-09 19:54		
Cardinal Flow Direction	NE		
Туре	Sanitary Gravity Main		
US Structure ID	SSM-1659		
US Diameter (in)	12		
US Material	Vitrified Clay Pipe		
US Rim to Invert (ft)	13.56000042		
US Flow Status	Steady		
Traps			
DS Structure ID	SSM-1658		
DS Diameter (in)	12		
DS Material	Vitrified Clay Pipe		
DS Rim to Invert (ft)	6.699999809		
DS Flow Status	Steady		
Drop Present	No		
Lower Drop Invert (ft)			
Drop Type			
Is Flow Arrow Correct?			
Data Collected	No		
Comments			

Table 4.5 Ssanitary Sewer Survey Example Data.

4.4 REQUIREMENTS FOR ACCEPTANCE

The current process for sewer acceptance from the City of Traverse City is as follows administered May 2004:

4.4.1 Sewer System Acceptance Procedure

- \equiv Complete evaluation and prepare recommendations and cost estimates.
- Owner to Apply for EGLE Part 41 Wastewater Permit.
- ≡ Recommended Improvements to be completed or Bond Posted in amount of recommended improvements.
- ≡ City to Receive Certification of Completed Improvements and Submits to EGLE.
- \equiv City Receives Easements for Sewers (20' wide).
- ≡ City Accepts Easements and Improved Sewer as Public Sewer.

4.4.2 Accepted Sewer System Evaluation

- \equiv Conduct video inspection:
 - Pipes are to be cleaned prior to video inspection.
 - Provide documentation of root intrusion evaluation.
 - Provide documentation of pipe condition evaluation.
- \equiv Conduct infiltration/inflow analysis:
 - Provide smoke testing for all system pipes.
 - Provide exfiltration testing for all system pipes.
- \equiv Visual inspection of manholes to occur and added to inventory checklist.

4.4.3 Sewer System Rehabilitation Options

One or multiple rehabilitation options shall be performed as recommended by the engineer, the following is a list of acceptable rehabilitation options:

 \equiv Pipe rehabilitation.

- Pressure grout joints
- Pipe burst with new carrier pipe.
- Line with cured in place pipe.
- Slipline existing carrier pipe.
- Replace portions of pipe.
- Pipe replacement.
- \equiv Manhole rehabilitation
 - Grouting.
 - Coating.
 - Structural Line.
 - Corrosion protection.
 - Step Replacement.
 - Flowline/Bench repair.
 - Replace manhole.

4.5 CCTV

Ten Sanitary sewer reaches were CCTVed for this project full CCTV reports can be found in **Appendix-D-6.** Video has been provided with GIS data. It is recommended to continue to CCTV and document the condition of the sanitary sewer as failed and compromised sewer pipe is the most common contributor to infiltration within a sanitary system. **Appendix D-7** provides map of CCTV.

4.6 ACTIONS REQUIRED FOR MAINTENANCE AND REPAIR

Based on the current condition assessment and items required for City of Traverse City Sewer System Acceptance Procedure, a plan for further CCTV and lining of sanitary sewer and structures is required. Current CCTV provides evidence that the of the existing sewer does not have any structural defects that would prevent lining and therefore omits the cost intensive procedure of replacing failing sewer.

The 2017 Traverse City Sanitary Sewer System Asset Management Plan was reviewed in the assessment of the Grand Traverse Commons stormwater system. The Level of service and long-term needs recommendations for the City were used as the standards required for the Grand Traverse Commons storm system to meet. It is recommended to clean storm sewers every 2 years. This process should also include inspection and televising of all sewers and structures every 5 years. These ongoing management practices are provided in **Table 4.5**. The quantity provided is the recommended yearly quantity to be cleaned and inspected to address all sewers and structures within the recommended period. The cleaning schedule should be adjusted to take into account the actual conditions in various parts of the sanitary system; routine cleaning can result in over-maintenance of the system. In most sanitary systems, some sections do not require frequent cleaning while other sections may require cleaning on a more frequent basis if they are susceptible to blockages. Information from the inspection program should be used to help identify problem areas in the gravity sewer system and related structure, quantify defects and problem areas, and develop a preventive maintenance sewer cleaning program based on actual conditions in a particular sanitary system.

Table 4.5 Sanitary Sewer System Program

Procedure	Quantity	Unit Cost	Annual Cost
Sewer Cleaning	9,200-ft	\$3.50 / foot	\$32,200
Structure Cleaning	59 each	\$300 / each	\$17,700
Sewer Inspection (CCTV)	3,700-ft	\$5 / foot	\$18,500
Structure Inspection	24 each	\$100 / each	\$2,400

Notes:

1. Annual cost rounded to nearest \$100

SECTION 5.0 — ROAD, SIDEWALK, AND PARKING AREAS

5.1 INTRODUCTION

The Grand Traverse Commons (GTC) study area included 2.18 centerline miles of roadway with adjacent sidewalk and 28 parking lots. GTC is responsible for the maintenance, repair, and replacement activities for the roadway, sidewalk, and parking lot assets. As part of the infrastructure assessment, HRC & GFA evaluated the pavement conditions of these assets and field-verified the grade of various sidewalk landings and ramps for compliance with the Americans with Disabilities Act (ADA). The goal of the assessment was to evaluate how to best allocate resources to maintain, preserve, and improve the pavement-related assets under GTC's jurisdiction. **Figure 5.1** shows an overview of the study area.

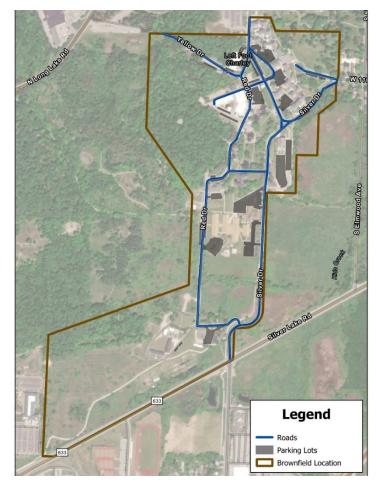


Figure 5.1: GTC Study Area Overview

To develop a capital improvement plan, HRC & GFA completed a condition assessment of all the roadways, adjacent sidewalks, and parking lots. The condition assessment was completed by performing a visual survey of the existing pavement assets. The sidewalk landing and ramp grades were also reviewed to verify they were less than two (2) and eight (8) percent, respectively, to meet ADA compliance. The condition assessment of the pavement, sanitary and storm sewers, and water distribution will all be considered for a holistic approach in developing a capital improvement plan.

5.2 SURFACE TYPES AND CHARACTERISTICS

The type of pavement used is determined by several different factors, such as cost of construction, cost of maintenance, frequency of maintenance, and type of maintenance. These factors can have benefits affecting asset life and typically there are tradeoffs for each surface type used. The pavement assets reviewed by HRC & GFA consisted of concrete, asphalt, brick paver, and gravel pavement types.

Concrete pavement is durable and has a longer service life than asphalt when properly constructed and maintained. Concrete pavement can also have longer service periods between maintenance activities, which can help reduce operational disruptions. Concrete pavement, however, has a higher cost than asphalt and can be challenging to rehabilitate and maintain at the end of its service life. Common distresses for concrete include surface defects (polishing, pop-outs, scaling), joint failures, pavement cracks (transverse, corner, meander), and pavement deformation (blow-ups, settlement, potholes). A typical concrete pavement design life will provide service for 30 years before major rehabilitation is required.

Asphalt pavement is less expensive to construct than concrete, but it requires more frequent maintenance activities to maximize its service life. Common distresses for asphalt include surface defects (raveling, flushing, polishing), pavement deformation (rutting, settling, frost heave), pavement cracks (transverse, block, alligator), and failed patches (potholes). A typical asphalt pavement design life will provide service for 18 years before major rehabilitation is necessary.

Brick pavers have been used in urban development areas for many years for pavement surfacing. Brick or block pavements are generally constructed on a sand stabilizing base. The bricks or blocks are typically laid without any joints (mortar) and filled with sand to fill up any irregularities. Common distresses for brick pavers include gaps, breaks, discoloration, settlement, and failed utility patches. History indicates brick streets have lasted over 100 years, since bricks themselves do not warp or buckle, but the condition of the sand or gravel base typically fails first.

Gravel (unpaved) pavement is typically found where low construction and maintenance costs exist. Gravel roads do not contain many of the inventory elements common to paved roads, so rating by surface condition is problematic. Gravel roads are assessed based on their major improvement-based features like surface width, drainage adequacy, and structural adequacy rather than maintenance features like cracking or joint failures.

5.3 ASSET RATING SYSTEM

HRC & GFA used the Pavement Surface Evaluation and Rating (PASER) system to evaluate the pavement conditions at GTC. The Michigan Transportation Asset Management Council (TAMC) and Michigan Department of Transportation (MDOT) have adopted the PASER system as the statewide standard for evaluating pavement conditions. The PASER system uses visual inspection conducted by a trained engineer and assigns a rating number based on the pavement type (concrete, asphalt, brick, gravel) and magnitude of deterioration present. The ratings for the existing pavement conditions were collected in November 2022 by HRC personnel trained and certified by the TAMC in PASER.

The rating systems for concrete and asphalt utilize a 10-point scale with 10 indicating the pavement is in excellent condition (new construction) and 1 meaning the pavement has failed. The rating system for brick is similar but utilizes a 4-point scale instead. The rating system for gravel utilizes a 10-point inventory-based rating (IBR) scale focusing on the surface width, drainage adequacy, and structural adequacy. A detailed description of the rating systems for concrete, asphalt, brick, and gravel is included in **Appendix E-1**.

Pavements in good condition are represented by a rating between 8 to 10 (4 for brick) and have very few, if any, defects. Pavements in this condition require routine maintenance, such as street sweeping or drainage cleaning, and have been newly constructed. **Figure 5.2** shows an image of a pavement in good condition with a rating of 9 on Red Drive between Gray Drive.

Figure 5.2: Image of Good Pavement with Rating of 9 on Red Drive

Pavements in fair condition are represented by a rating between 5 to 7 (2 for brick) and their surface is starting to deteriorate. Pavements in this condition require preventative maintenance, such as joint or crack sealants. **Figure 5.3** shows an image of a pavement in fair condition with a rating of 5 on Silver Drive between Red and Brown Drive.

Figure 5.3: Image of Fair Pavement with Rating of 5 on Silver Drive

Pavements in poor condition are represented by a rating between 1 to 4 (1 for brick) and exhibit evidence their underlying structure is failing. Pavements with a rating of 4 typically start showing the first signs of structural weakening. Pavements in this condition require structural improvements, such as rehabilitation or reconstruction. **Figure 5.4** shows an image of a pavement in poor condition with a rating of 2 on 11th Street west of Silver Drive.

5.4 FINDINGS AND OBSERVATIONS

5.4.1 Roadway Conditions

The roadway network was broken down by segments that were created when there was an intersection, change in pavement type, or substantial change in rating. Ratings between 8 to 10 indicate the road is in good condition, while 5 to 7 indicate fair, and 1 to 4 indicate poor. Most of the roads consisted of asphalt pavement. The average rating for the roadway lane-miles in the study is 5.805. The rating indicates the road network on average is in fair condition. **Table 5.1** shows a summary of the total and percentage of roadway lane-miles associated with each rating.

Roadway Ratings											
Devement Turne		Poor Co	ondition		Fair Condition Good			d Condition		Total	
Pavement Type	1	2	3	4	5	6	7	8	9	10	Total
Asphalt Lane Miles (PASER)	0.000	0.359	0.411	0.181	0.619	1.448	0.000	0.122	0.859	0.000	3.999
Concrete Lane Miles (PASER)	0.000	0.000	0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.150
Gravel Lane Miles (IBR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.215	0.000	0.000	0.215
Total Lane Miles	0.000	0.359	0.561	0.181	0.619	1.448	0.000	0.337	0.859	0.000	4.364
Percentage of Lane Miles by Rating	0.0%	8.2%	12.9%	4.1%	14.2%	33.2%	0.0%	7.7%	19.7%	0.0%	100.0%
Percentage of Lane Miles by Rating		25.	2%		47.4% 27.4		27.4%		100.0%		
Average Roadway Rating								5.805			

A complete roadway asset rating map showing a color-coded depiction of all the GTC roadway ratings is included in **Appendix E-2**. The map is intended to provide a relative indication of segments that are in good, fair, or poor condition. Road segments that are in good, fair, or poor condition are shown in green, yellow, or red, respectively.

5.4.2 Parking Lot Conditions

The parking lots were broken down by areas that were created when there was a change in pavement type or rating. Concrete, asphalt, and gravel ratings between 8 to 10 indicate the parking lot is in good condition, while 5 to 7 indicate fair, and 1 to 4 indicate poor. Since the brick paver ratings are based on a four-point scale, a 2.5 multiplier was used to convert them to a 10-point scale to match the concrete, asphalt, and gravel ratings. The average rating for the parking lot areas in the study is 5.272. The rating indicates the parking lots on average are in fair condition. **Table 5.2** shows a summary of the total and percentage of parking lot areas associated with each rating.

Parking Lot Ratings												
Deveryont Trune		Poor Condition Fair Condition Good Condition				Total						
Pavement Type	1	2	3	4	5	6	7	7.5 *	8	9	10	TOLAI
Asphalt Square Feet (PASER)	0	0	62,584	8,189	60,045	81,069	51,459	0	9,791	0	0	273,137
Concrete Square Feet (PASER)	0	21,700	0	4,329	0	611	4,178	0	0	0	0	30,818
Gravel Square Feet (IBR)	0	0	0	0	0	2,333	0	0	15,243	0	0	17,576
Brick Square Feet (PASER)	0	0	0	0	0	0	0	8,936	0	0	0	8,936
Total Square Feet	0	21,700	62,584	12,518	60,045	84,013	55,637	8,936	25,034	0	0	330,467
Percentage of Square Feet by Rating	0.0%	6.6%	18.9%	3.8%	18.2%	25.4%	16.8%	2.7%	7.6%	0.0%	0.0%	100.0%
Fercentage of Square Feet by Raing		29.	3%			60.4%		10.3%			100.0%	
Average Parking Lot Rating								5.272				

Table 5.2: Parking Lot Rating Summary

*Brick pavers PASER rating of 3 (4-point scale) converted to 7.5 (10-point scale).

A complete set of parking lot asset rating maps showing a color-coded depiction of all the GTC parking lot areas is included in **Appendix E-3**. The maps are intended to provide a relative indication of parking lot areas that are in good, fair, or poor condition. Parking lot areas that are in good, fair, or poor condition. Parking lot areas that are in good, fair, or poor condition are shown in green, yellow, or red, respectively.

5.4.3 Sidewalk Segment, Landing, and Ramp Conditions

The sidewalk segments adjacent to the roadway were rated to be in good, fair, or poor condition. The grade at the sidewalk landings and ramps adjacent to a crossing were also field verified using a level. Landings and ramps with grades at two (2) percent or less and eight (8) percent or less, respectively, meet ADA compliance. A sidewalk locations map with tables showing the condition (good, fair, poor) and grade at the landings and ramps is included in **Appendix E-4**.

SECTION 6.0 — SYSTEM MAPPING

6.1 PROCEDURE

The GIS system for the Grand Traverse Commons began with integrating the existing GIS data for the area from both Traverse City and Garfield Township. Water, storm, and sanitary sewer data was obtained from each municipality and merged into a single database. The final fields were modeled after Traverse City's data since most of the Commons area resides in the City's boundary. Recent Aerial photography was provided by Traverse City and used throughout the project to locate new assets.

Once the initial GIS datasets were merged and organized, a variety of resources were used to improve the data, filling in gaps of missing assets or their attributes such as size and material. As-built plans and studies were provided by the municipalities. These documents contained information about the location and details of a variety of utilities within the project area and new structures and pipes for sewer and water distribution systems were integrating into the existing GIS system.

While the available plans and current GIS data provided valuable information about public utilities such as storm, sanitary, and water systems – there were still several private utilities in the area that needed to be digitized into GIS. For these utilities, MISS DIG 811 requests were made for the project area. MISS DIG 811 operates as the Underground Utility Safety Notification System for the State of Michigan and includes private utilities missing in the initial GIS development. We received PDF maps of fiber optic, telephone, electric, and gas utilities from companies such as AT&T, Consumers Electric, DTE Energy, and Charter Communications. The PDFs were drawn in GIS by lining up the drawing with aerial photographs for above-ground structures and lines, while underground assets were located by referencing surrounding landmarks. Attributes available from the static maps were added where possible.

Roads were initially taken from the State of Michigan GIS Open Data portal, using the "All Roads" Version 17a feature class. The state-wide dataset was corrected where it did not match the aerial imagery. Parking lots were digitized manually using aerial photography.

After all available resources were studied and integrated in the GIS, field inspections began for transportation, water, storm, and sanitary sewer utilities using ArcGIS Collector and Field Maps mobile applications. Transportation field work included road, sidewalk, and parking lot inspections. Attributes such as material, PASER rating, and general conditions were reintegrated into the GIS system when inspections were complete and reviewed for quality. For the water system, fire hydrants and valves were inspected for condition and new assets were discovered. Similarly, sewer manholes were inspected for sanitary and storm sewers. Storm sewer inspections additionally included catch basins, detention basins, and retention basins. New assets that were discovered during inspections were then integrated into GIS along with attributes captured in the field.

New data from field inspections for the sanitary and storm sewer systems was consolidated and the project team decided which sewers would be televised using PACP inspection standards and CCTV technology. These CCTV inspections uncovered new assets and provided detailed condition information for the televised pipes. GIS was updated with this new information and reports and videos were linked to the associated GIS asset.

Finishing the CCTV inspections concluded the new information gathered for this project's scope. All inspection data was cleaned up and integrated into the database, which was then compressed to a zip file for delivery.

6.2 ASSUMPTIONS

While developing the GIS, it was assumed that the data we received from MISS DIG 811 requests included all assets within the study area. A combination of aerial imagery and GPS technology was used to locate newly found structures within the Commons and the GIS placement therefore is dependent on the accuracy of those resources. GIS assumes these limitations are minimal when proper technology and methods are used.

6.3 DELIVERABLES

Deliverables for GIS will include a file geodatabase containing utility data for all assets included in the study area. Record drawings, field inspection retrieved photographs and details about the makeup and condition of transportation, water, and sewer systems. Sewers inspected using CCTV cameras have reports, videos, and condition scores that are available in the GIS database. Appendix E provides GIS map data for water, storm, and sanitary systems within the Commons.

SECTION 7.0 — CAPITAL IMPROVEMENT PLAN

7.1 INFRASTRUCTURE ELEMENTS

A capital improvement plan (CIP) is a short-range list identifying projects, costs, and impacts to help a community determine the priority for implementation. A CIP usually includes suggested projects to implement within the next 5 to 10 years. A CIP also helps a community anticipate needs rather than reacting to problems. A CIP typically focuses on elements of infrastructure and allows for a systematic evaluation of all potential projects. A CIP for Grand Traverse Commons was developed to help address the needs for infrastructure improvements. No current funding and timeline is provided for improvements within the Grand Traverse Commons and therfore no timeline for project completion has been incorporated into the capital improvement plan.

The CIP for Grand Traverse Commons focused on improving the ammenities. A hollistic approach was taken considering the condition of various infrastructure elements. The condition of the following infrastructure elements was used to determine which ammenities to improve:

- 1. Water Distribution System
- 2. Storm Drainage System
- 3. Sanitary Sewer
- 4. Pavement

The storm and sanitary conditions observed were all within the structural limits of rehabilitation measures. These measures will not require open cut construction. Therefore, to be the most cost effective, locations where roadway rehabilitation does not require full depth reconstruction sewer should be CCTV's to determine if rehabilitation is recommended. For improved project cost it is recommended to combine rehabilitation of the sewer as a Commons-wide lining project. Minor improvements specifically to the structures were incorporated into the selected roadway and parking lot projects when economically efficient. Additionally, water distribution improvements identified occur outside the influence of the roadway. Combination of water distribution and pavement restoration was not identified to provide any economic benefit to the to the proposed project costs.

Out of the infrastructure elements, the deterioration of the pavement had the most influence in developing the CIP as roads requiring full reconstruction provide grounds for open cut utility replacement. Details of the pavement conditions for the roads and parking lots are included in **Appendices E-2** and **E-3**, respectively. Details of how the road and parking lot conditions relate to the storm and sanitary conditions are included in **Appendix F-1**.

Since annual budget and specific funding sorces were not identified, this reports only identifies project to provide greatest benefit to the community in order of priority. This does not provide a timeline for project completion.

7.2 PAVEMENT DETERIORATION CURVE

Determination of pavement level of service is important for the incorporation of utility replacment within projects identified.

A deterioration curve describes how the condition of the pavement progresses over time. As pavement ages, it will deteriorate much more quickly at the end of its service life, which ends up costing much more to repair. Understanding how a deterioration curve works can assist the community to predict the future condition of their

roads and parking lots. It can also help determine how much the community should invest over time in their road and parking lot infrastructure. **Figure 7.1** shows a typical pavement deterioration curve for any road or parking lot area going from good to poor over time. It also shows the type of repair expected at each condition.

Source: Michigan's Roads and Bridges 2008 Annual Report, Michigan TAMC

Figure 7.1: Pavement Deterioration Curve

Analyzing deterioration curves specific to pavement can also help estimate its remaining service life (RSL). The RSL for pavement is defined as the amount of life left before it can no longer benefit from preventative maintenance and requires a total reconstruction. When using a deterioration curve to estimate RSL, it is the portion to the right of any given point on the curve before it bottoms out. The point at which the curve bottoms out is the critical distress point where the RSL is zero. The RSL for a road or parking lot typically approaches zero at a PASER rating of 3 or lower.

7.3 MIX OF FIXES

When selecting candidate improvement, there are a variety of treatment methods that can be applied. Applying the various treatment methods are often referred to as creating a mix of fixes. The mix of fixes approach applies the right fix, in the right place, at the right time. The mix of fixes approach is the centerpiece of an effective CIP in maximizing the service life of the infrastructure elements. All the infrastructure elements listed above have a mix of fixes associated with them depending on their condition. **Tables 7.1 – 7.3** show the estimated costs of recommended improvement types for the infrastructure elements based on their condition.

Water Distribution System					
ltem	Recommended Treatment	Cost to Improve			
Pressure Reducing Valve	Install	\$18,000 / each			
Check Valve	Install	\$12,000 / each			
12" Watermain	Install	\$250 / foot			
10" Water Main	Replace	\$220 / foot			
12" Watermain	Replace	\$270 / foot			
Road Crossing	Jack and Bore	\$600 / foot			
Road Crossing	Open Cut	\$450 / foot			

Table 7.1: Recommended Costs of Improvements for Water Distribution System

Sanitary/Storm Sewer						
ltem	Cost to Improve					
Structure	MH Replacement	\$5,000 / each				
Structure	MH Lining	\$1,000 / each				
Sewer	Replacement	\$115 / foot				
Sewer	CIPP Lining	\$5 / foot				
Sewer	Pipe Bursting	\$95 / foot				

Table 7.2: Recommended Costs of Improvements for Sanitary/Storm Sewer

Table 7.3: Recommended Costs of Improvements for Roads

Roads						
DASED Dating	Recommended Treatment	Cost to Improve				
		(Per Lane Mile)				
5 - 6	Thin Overlay	\$250,000				
1 - 4	Reconstruction (Asphalt)	\$1,000,000				

Table 7.4: Recommended Costs of Improvements for Parking Lots

Parking Lots						
PASER Pating	Recommended Treatment	Cost to Improve				
TAGEN Nating		(Per Square Foot)				
7	Crack Seal	\$0.50				
5 - 6	Thin Overlay	\$2.70				
4	Mill & Overlay	\$9.00				
1 - 3	Reconstruction (Asphalt)	\$18.00				
1 - 3	Reconstruction (Concrete)	\$21.00				

7.4 CAPITAL IMPROVEMENT PLAN DEVELOPMENT

To help the community in achieving their goal of improving their infrastructure, we have developed separate CIPs for the roads, parking lots, water mains, storm, and sanitary. Each CIP shows a list of projects or scope the community should consider. The CIPs for the roads and parking lots have the project improvements organized by priority rather than start date since the community is unsure when these projects can be performed. When considering the conditions of the infrastructure elements, the good/fair/poor rating scale outlined in the previous sections was considered. Roads and parking lots having multiple infrastructure elements in poor condition were given priority. **Tables 7.4 – 7.8** show a list of projects or scope the community should consider. Detailed CIPs for the projects showing a breakdown of the pavement and utility types, treatments, and costs are included in **Appendix G**.

Table 7.5: Water Main CIP

Improvement	Estimated Cost
Pressure District Isolation	\$350,000
Water Main Replacement	\$474,000
System Connection	\$405,000

Table 7.6: Storm CIP

Task	Estimated Cost
CCTV ¹	\$32,815
Manhole Rehabilitation	\$56,000
Sewer Rehabilitation ²	\$125,000

Notes:

1.

Approximately 6,563 feet of untelevized sewer

2. Sewer rehab cost calculated based on cost associated with current CCTV inspected pipes and may differ significantly as more sewer is televised.

Table 7.7: Sanitary CIP

Task	Estimated Cost
CCTV ¹	\$75,470
Manhole Rehabilitation	\$271,430
Sewer Rehabilitation ²	\$537,800

Notes:

1. Approximately 15,094 feet of untelevized sewer

 Sewer rehab cost calculated based on cost associated with current CCTV inspected pipes and may differ significantly as more sewer is televised.

Table	7.8:	Road	CIP
-------	------	------	-----

Project Priority	Segment	From	То	Ln Miles
1	Orange Dr	1,378 Ft North of Silver Dr	442 Ft South of Brown Dr	0.211
	Red Dr	GrayDr	Cottageview Dr	0.173
2	Cottageview Dr	GrayDr	North Limits	0.277
	GrayDr	Red Dr	Cottageview Dr	0.078
3	11th St	Cul-de-sac	Silver Dr	0.148
4	Red Dr	Brown Dr	GrayDr	0.214
5	GrayDr	Red Dr	Red Dr	0.314
6	Silver Dr	Cottageview Dr	11th St	0.279
7	Brown Dr	Red Dr	Silver Dr	0.157
8	Silver Dr	Brown Dr	Cottageview Dr	0.216
9	Silver Dr	South Limits	Brown Dr	0.855
10	Orange Dr	442 Ft South of Brown Dr	Brown Dr	0.167

Table 7.9: Parking Lot CIP

Project Priority	Parking Lot	Area (Sft)
1	PL 1	31,917
2	PL 26	21,700
		12,681
3	PL 12	20,821
4	PL 3	47,980
5	PL 8	17,560
6	PL 9	20,750
7	PL 7	20,749
8	PL 2	28,240
9	PL 13	1,916
10	PL 21	2,706

Project 1: Pressure District Isolation

Location: Red Drive Booster Station and Five (5) locations North and West of Grand Traverse Commons **Estimated Cost:** \$350,000

Proposed Work: Construction of a new 8-in PRV at the location of the Red Drive Booster Station. Construction of five (5) check valves along watermains connecting Grand Travers Commons to PD-1. Installation of master meter & demolition of existing Red Drive Booster Station.

Purpose: To increase the system water pressure during daily use.

Project 2: Orange (Red) Drive Road Reconstruction

Location: Orange Drive, 1,378 ft North of Silver Drive, 442 ft South of Brown Drive.

Estimated Cost: \$220,000

Proposed Work: 530 feet of full depth roadway reconstruction with the additional removal and replacement of One (1) storm catch basin, three (3) sanitary structures and 40 Ft of 6" sanitary sewer.

Purpose: To increase the level of service of roadway and utilities within the project limits.

Project 3: Village Pavilion Roadway Reconstruction

Location: Northern limits of Cottageview Drive to Gray Drive, Gray Drive to Red Drive, Red Drive back to Cottageview Drive. **Estimated Cost:** \$572,000

Proposed Work: Full roadway reconstruction of all three roadway segments and the replacement of two (2) Storm catch basins. Replacement of 24-ft of storm sewer. Adjust and replace one (1) sanitary cover and frame.

Purpose: To increase the level of service of roadway and utilities within the project limits.

The Projects are provided in order of recommended priority. A total of 12 projects have been determined as top priority for potential improvements. These can be used as a roadmap for future project implementation. An additional 12 roadway and parking lot projects not covered in the executive summary were deemed appropriate for long-term improvements and are included in the Capital Improvement tables. All projects are shown on a map of the Commons at the end of this section.

Project 4: Sanitary Rehabilitation

Location: Commons Wide Estimated Cost: \$885,000

Proposed Work: CCTV of remaining 15,094-ft of sanitary sewer. Cured in place pipe (CIPP) treatment of approximately 13,000-ft of sanitary sewer including pre cleaning and post CCTV. Lining of approximately 84 sanitary structures.

Purpose: To decrease infiltration and significantly decrease probability of structural failure.

Project 5: Storm Rehabilitation

Location: Commons Wide Estimated Cost: \$750.000

Proposed Work: CCTV of remaining 6,563-ft of storm sewer. Cured in place pipe (CIPP) treatment of approximately 2,500-ft of storm sewer including pre cleaning and post CCTV. Lining of approximately 56 storm structures. Additional work included research and inventory of

additional private infrastructure records maintained by Munson, GT Watershed, etc. The project would include a regional hydraulic evaluation including modelling to evaluate surface infrastructure (ditches, streams, tributaries, etco that contribute to Kids Creek along with recommended improvements.

Purpose: To significantly decrease probability of structural failure and increase the flow capacity (decrease in friction factor). Furthermore prevent future multi-million dollar damage to Munson and surrounding businesses as a result of flooding.

Project 6: Water Main Replacement Project

Location: 11th Street from Silver Drive to Cul-de-sac Estimated Cost: \$474,000

Proposed Work: Removal of 2030-ft of 6-in watermain, construction of 1,486-ft of 10-in water main and construction of 544-ft of 12-in watermain. This project includes three (3) roadways crossings and construction will occur in place of the existing water main.

Purpose: To increase fire flow capacity of system to meet requirements for multi-story buildings.

Project 7: 11th Street Reconstruction

Location: 11th Street from Silver Drive to Cul-de-sac Estimated Cost: \$148,000

Proposed Work: 650-ft of full depth roadway reconstruction.

Purpose: To increase the level of service of roadway within the project limits.

Project 8: System Connection Project

Location: South Limits of Grand Traverse Commons to Frank Road water main

Estimated Cost: \$465,000

Proposed Work: Construction of 1,350-ft of 12-in watermain crossing Silver Lake Road and Frank Road connecting to existing 8-in watermain 550-ft south of Silver Lake Road

Purpose: To increase fire flow capacity of system and increase system reliability (ability to continue water service in the event of a water main break)

Project 9: Red Drive Reconstruction

Location: Red Drive from Brown Drive to Gray Drive (South intersection) Estimated Cost: \$240,000 Proposed Work: 590-ft of full depth roadway reconstruction and replacement of one (1) sanitary structure with rim and cover.

Purpose: To increase the level of service of roadway and utilities within the project limits.

Project 10: PL 1

Location: 1100 Silver Drive parking lot Estimated Cost: \$587,000 Proposed Work: 31,917-sft of full depth asphalt reconstruction, replacement of storm structure and 113-ft of storm sewer replacement. Purpose: To increase the level of service of parking lot and utilities.

Project 11: PL 26

Location: 911 Silver Drive South parking lot Estimated Cost: \$722,000

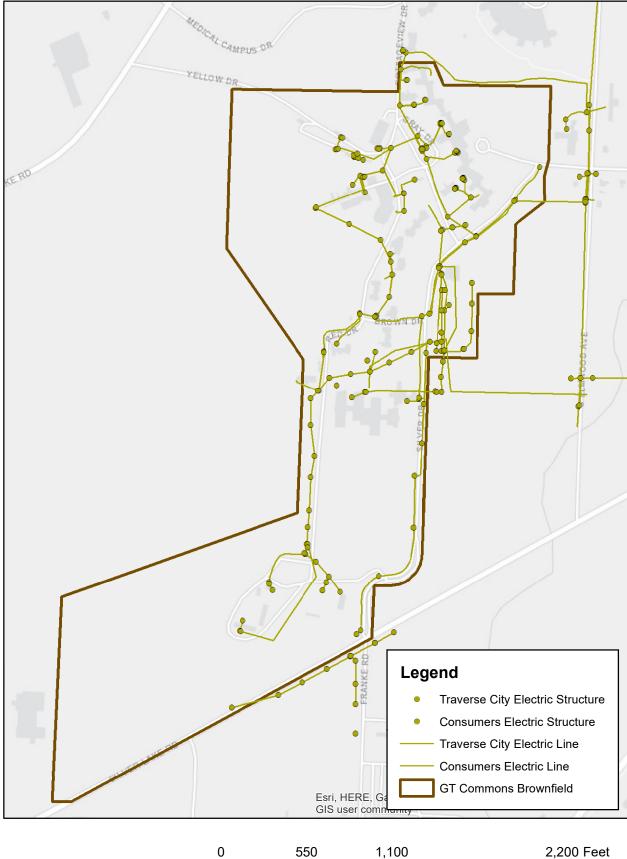
Proposed Work: Removal of 21,700-sft concrete parking lot, Construction of 34,680-sft concrete parking lot.

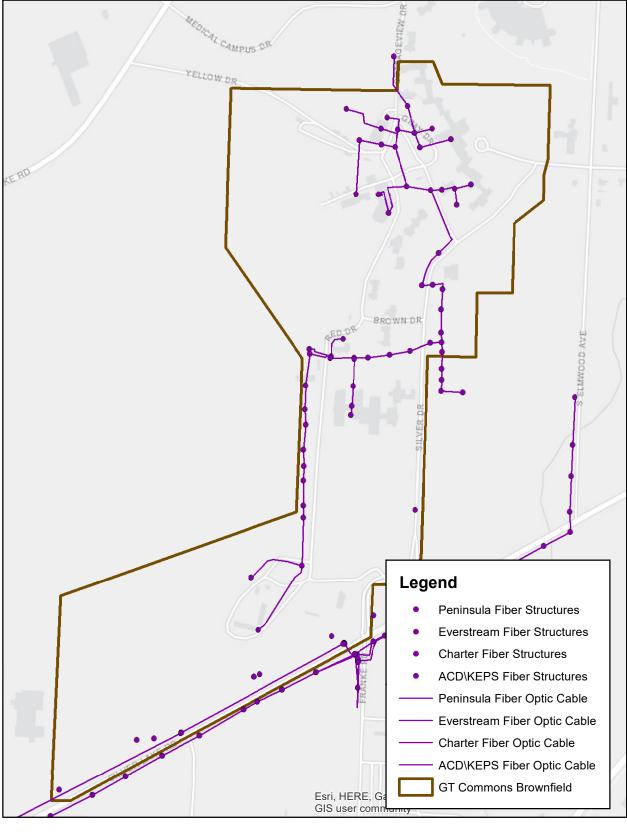
Purpose: To increase the level of service of the parking lot.

Project 12: Gray Drive Reconstruction

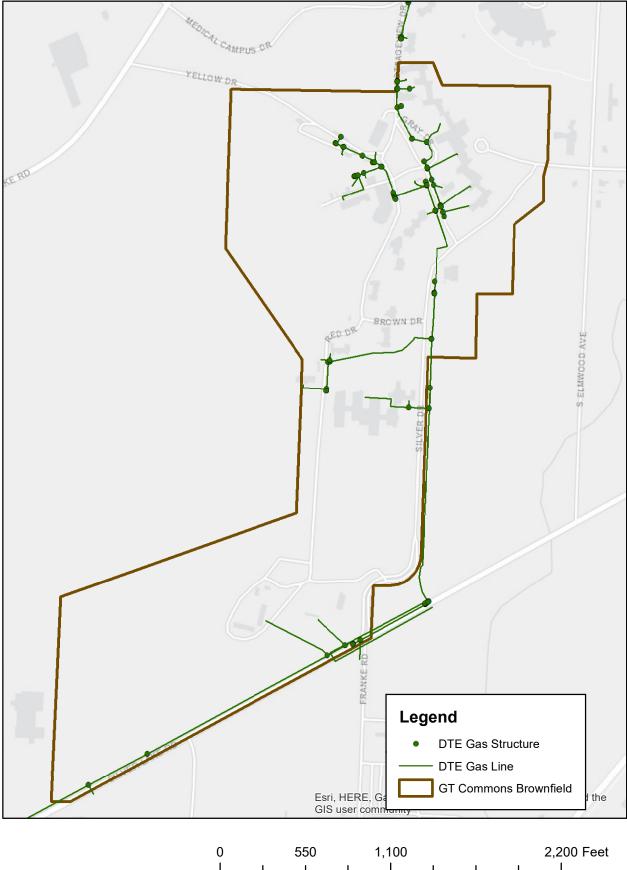
Location: Gray Drive loop from Red Drive to Red Drive **Estimated Cost:** \$84,000

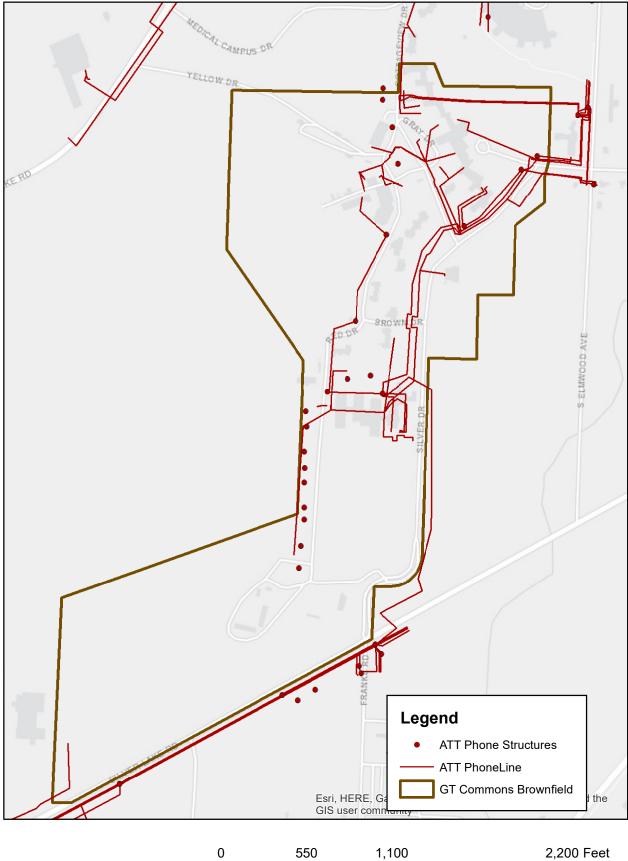
Proposed Work: 935-ft mill and overlay roadway construction. Adjustment of sanitary structures within project limits. Replacement of 90-sft of sidewalk. **Purpose:** To increase the level of service of roadway and utilities within the project limits.

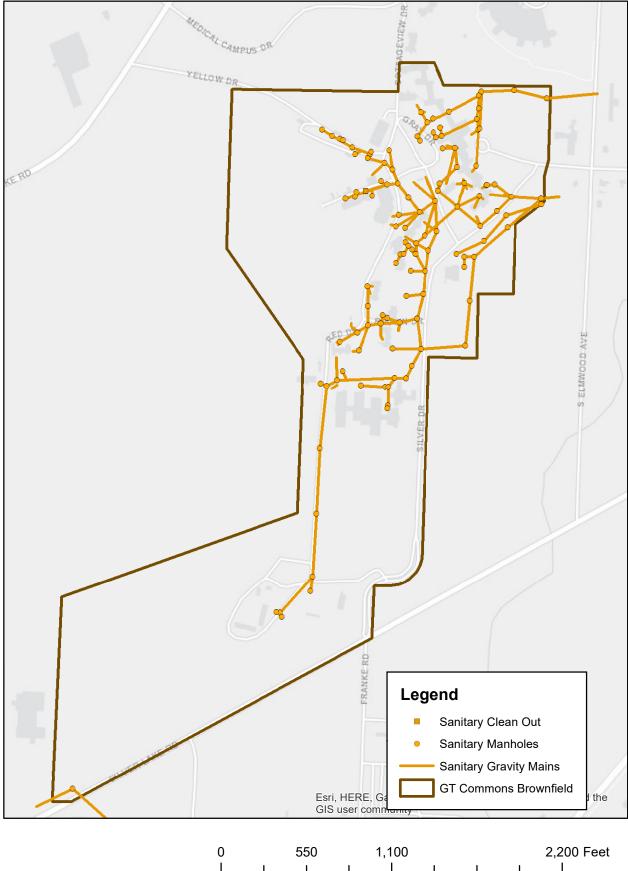

HRC & GFA also recommend the following actions to be taken by the community to ensure the Water Main, Storm, Sanitary, Road, and Parking Lot CIPs remain a useful tool and up to date:

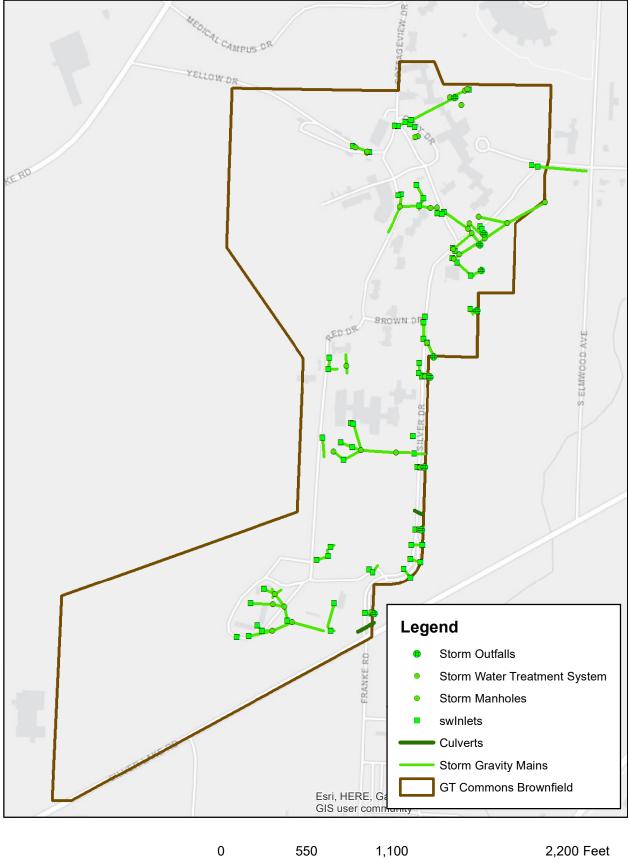

- Combine the Water Main, Storm, Sanitary, Road, and Parking Lot CIPs with the community's familiarity of the area to most efficiently apply preventative maintenance, rehabilitation, and reconstruction.
- Annually review and update the treatments outlined in the CIPs based on previous improvements and new priorities.
- Reassess the condition of the roads, parking lots, and applicable utilities at least every three (3) years and record their respective condition (rating) to ascertain the effectiveness of implemented improvements.
- Implement routine cleaning and inspection of sanitary and stormwater systems as outlined in report.
- Regularly evaluate the budgeted amount of funding for treatments and increase as needed.

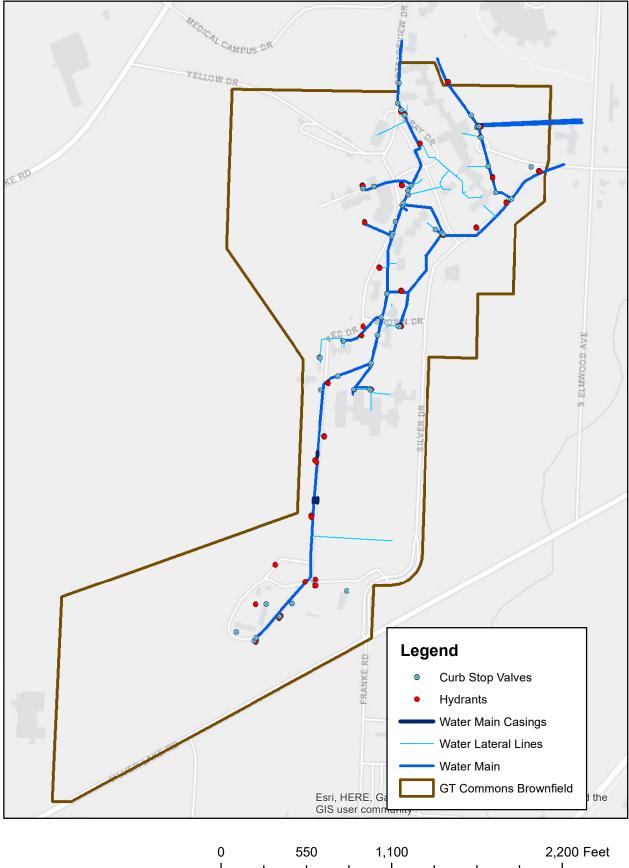
It is also important to note that the CIPs are working documents and should be continually reviewed and updated to reflect changes in community needs, priorities, and funding. The CIPs should always help in advancing the community's strategic and long-term goals and work towards improving the infrastructure conditions.

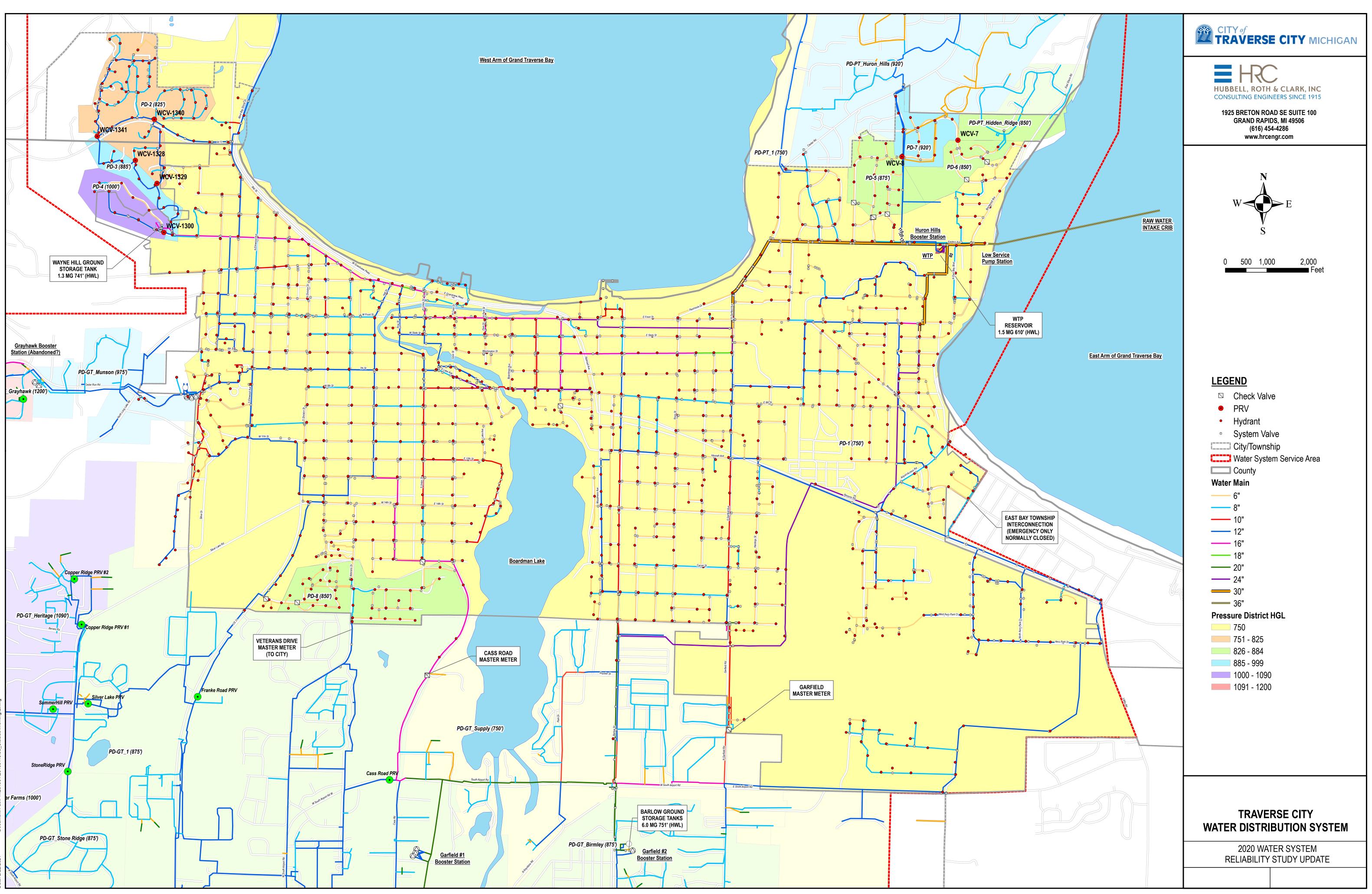


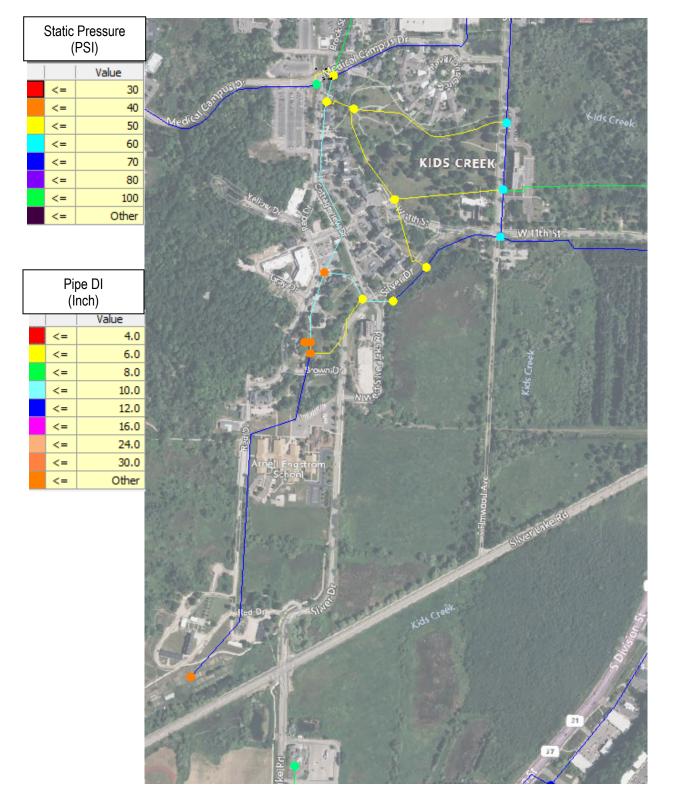

Appendix A —Utility Maps





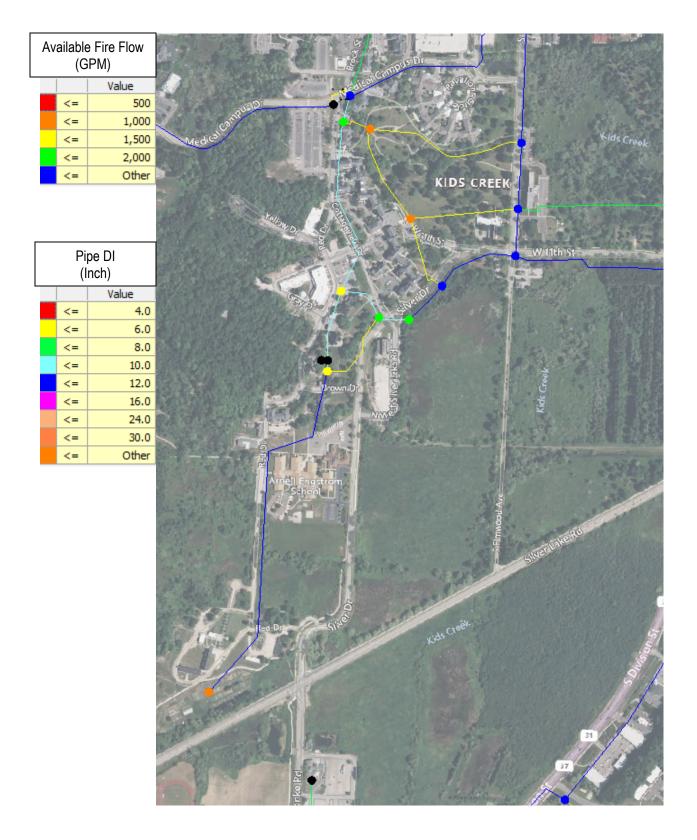

0 550 1,100 2,200 Feet



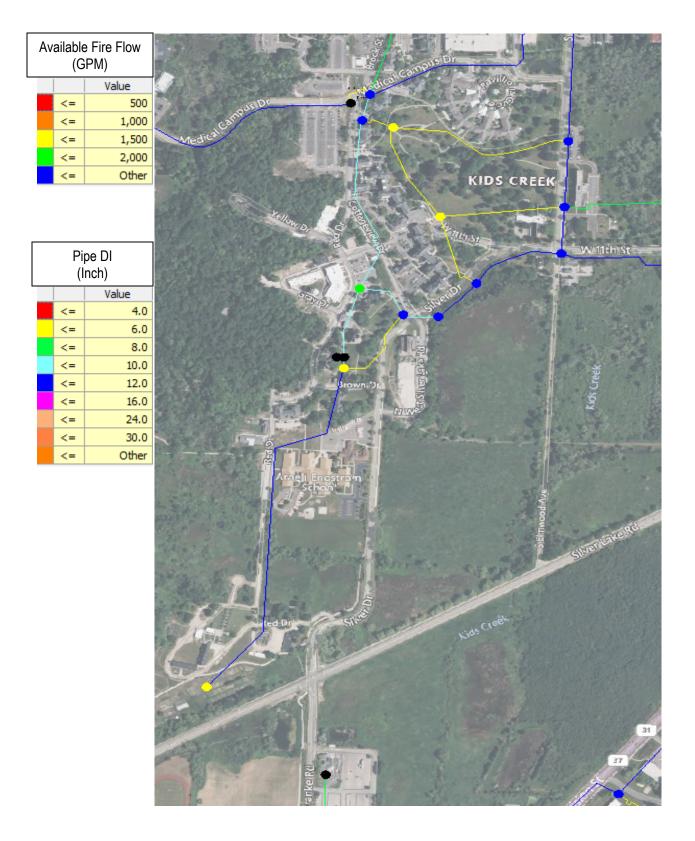

Appendix B — Water Model Simulations

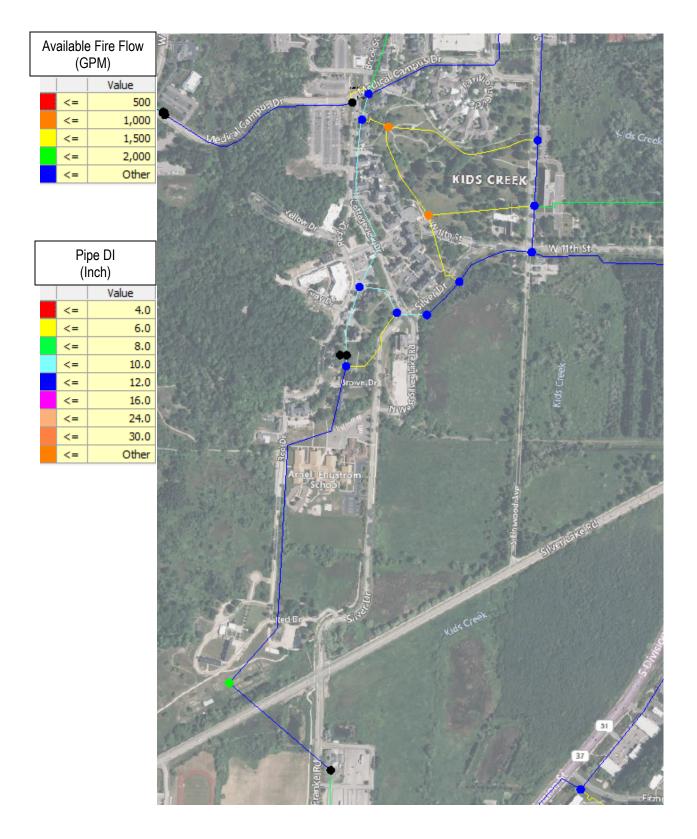
Appendix B-1 System Model

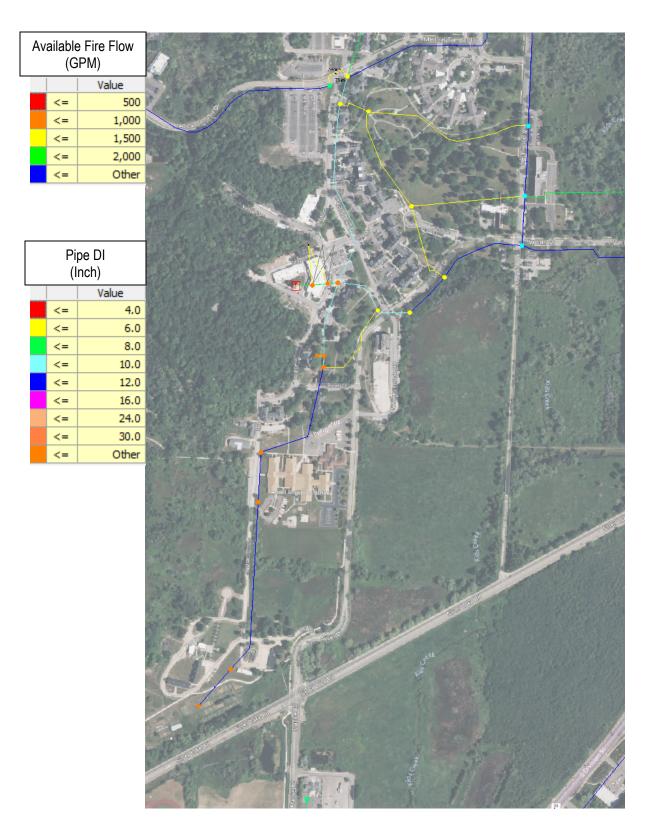
Appendix B-2 MDD, Existing System Pressure


Static Pressure (PSI) Value 30 <= 40 <= 50 <= <= 60 <= 70 80 <= <= 100 Other <= Pipe DI (Inch) Value 4.0 <= 6.0 <= 8.0 <= <= 10.0 12.0 <= <= 16.0 24.0 <= 30.0 <= Other <=

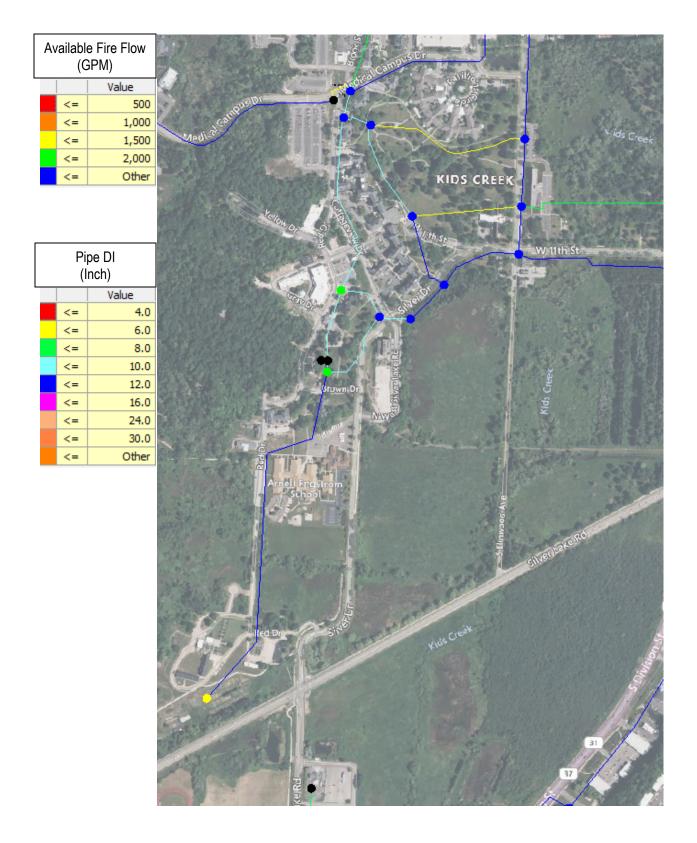
Appendix B-3 MDD, Pressure District Isolation


Appendix B-4 Existing Fire Flows

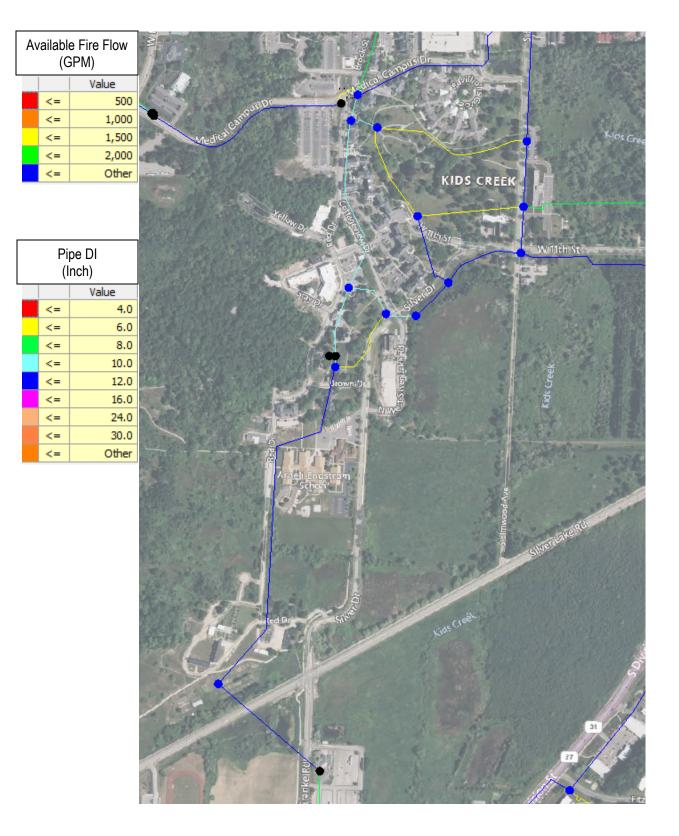

Appendix B-5 Fire Flow, Pressure District Isolation


Appendix B-6 Fire Flow, System Looping

Appendix B-7 Tank Rehab


Available Fire Flow (GPM) Value 500 <= 1,000 <= 1,500 <= 2,000 <= KIDS CREEK <= Other 11th St Pipe DI (Inch) Value 4.0 <= 6.0 <= 8.0 <= 10.0 <= <= 12.0 16.0 <= 24.0 <= 30.0 <= Other <=

Appendix B-8 Fire Flow, Pressure District Isolation & System Looping



Appendix B-9 Fire Flow, Pressure District Isolation & Water Main Upsizing

Appendix B-10 Fire Flow, All System Recommendations

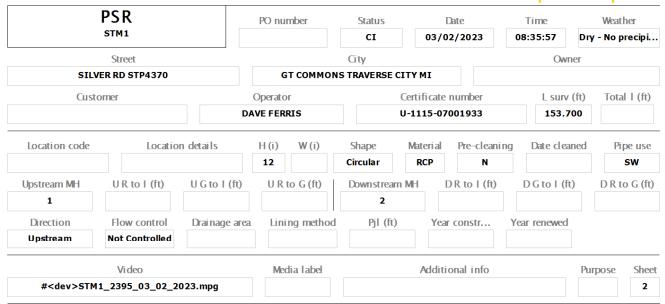
Appendix C — Storm System Figures

Appendix C-1 Storm Manhole Inspections and Improvement plan

Manhole ID	Inspection Status	Overall	Recommended Improvements
	inspection status	Condition	Recommended improvements
STM-163001	Descent Inspection	Fair	
STM-163002	Descent Inspection	Fair	
STM-163003	Descent Inspection	Fair	
STM-193002	Descent Inspection	Fair	
STM-193003	Descent Inspection	Fair	
STM-193004	Descent Inspection	Poor	abandoned
STM-193005	Not Found		
STM-193006	Not Found		
STM-193007	Not Found		
STM-193008	Descent Inspection	Fair	
STM-193009	Descent Inspection	Fair	
STM-193010	Descent Inspection	Fair	
STM-193011	Descent Inspection	Fair	
STM-193012	Descent Inspection	Fair	
STM-193013	Descent Inspection	Fair	
STM-193014	No Access		
STM-193015	No Access		
STM-193016	Descent Inspection	Poor	cover cracked needs replaced
STM-193017	Descent Inspection	Fair	
STM-193018	Descent Inspection	Fair	
STM-193019	Descent Inspection	Fair	
STM-193020	Descent Inspection	Fair	
STM-193021	Descent Inspection	Other	
STM-193022	Descent Inspection	Other	
STM-193023	Descent Inspection	Other	
STM-193024	Descent Inspection	Other	
STM-193025	Descent Inspection	Other	
STM-193026	Descent Inspection	Other	
STM-193027	Descent Inspection	Fair	
STM-193028	Surface Inspection		
STM-193029	Descent Inspection	Fair	
CB-2701	SD	Fair	needs cleaned
CB-2702	SD	Fair	needs cleaned
CB-2703	SD	Fair	
CB-2704	SD	Fair	needs cleaned
CB-2705	SD	Fair	needs cleaned
CB-2706	SD	Fair	needs cleaned
CB-2697	Descent Inspection	Fair	
CB-2699	SD	Other	
CB-2707	SD	Fair	debris
CB-2710	SD	Other	full of debris

CB-2713	Descent Inspection	Other	debris
	Descent Inspection	Fair	debits
CB-2715	Descent Inspection		
CB-2716	Descent Inspection	Fair	
CB-2717	Descent Inspection	Fair	
CB-2718	Descent Inspection	Fair	
CB-2719	Descent Inspection	Fair	
CB-2720	Descent Inspection	Fair	
CB-2730	SD	Poor	filled with debris needs new cover
CB-2731	Not Inspected		
CB-2732	Not Found		
CB-2733	SD	Poor	filled with debris
CB-2734	Not Found		
CB-2735	Descent Inspection	Fair	
CB-2736	Descent Inspection	Fair	
CB-2737	Descent Inspection	Fair	
CB-2738	Not Found		
CB-2739	Descent Inspection	Fair	
TRT-17	SD	Fair	needs cleaned, lots of debris
TRT-18	SD	Fair	needs cleaned out
TRT-19	Descent Inspection	Fair	
TRT-20	Descent Inspection	Fair	
TRT-21	Descent Inspection	Fair	
CB-2740	Descent Inspection	Fair	
CB-2740 CB-2741	Descent Inspection	Fair	
CB-2741 CB-2742	•	Fair	
CB-2742 CB-2743	Descent Inspection	Fair	
	Descent Inspection		
CB-2744	Descent Inspection	Fair	
CB-2745	Descent Inspection	Fair	
CB-2746	Descent Inspection	Fair	
CB-2747	Surface Inspection	Fair	
CB-2748	Descent Inspection	Fair	
CB-2749	Descent Inspection	Fair	
CB-2750	Descent Inspection	Fair	
CB-2751	Descent Inspection	Fair	
CB-2752	Descent Inspection	Fair	
CB-2753	Descent Inspection	Fair	
CB-2754	Descent Inspection	Fair	
CB-2755	Descent Inspection	Fair	
CB-2756	Descent Inspection	Poor	grate is partially there
CB-2728	Descent Inspection	Fair	
CB-2729	Descent Inspection	Fair	
CB-2759	Surface Inspection	Poor	plugged up with debris
CB-2760	Descent Inspection	Fair	
CB-2761	Descent Inspection	Fair	
CB-2762	Descent Inspection	Fair	
CB-2763	Descent Inspection	Fair	
CB-2764	Descent Inspection	Fair	
00 2104			1

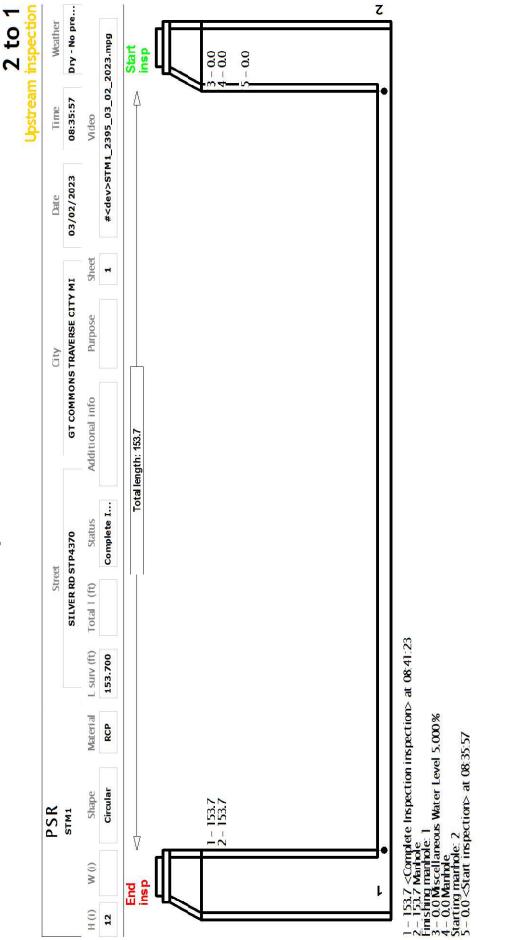
CB-2765	Descent Inspection	Fair	
CB-2766	Descent Inspection	Fair	surcharge
CB-2767	Descent Inspection	Fair	
CB-2768	Descent Inspection	Fair	
CB-2769	Surface Inspection	Fair	
CB-2770	Descent Inspection	Fair	
CB-2771	Descent Inspection	Fair	
CB-2772	Descent Inspection	Fair	
CB-2773	Descent Inspection	Fair	
CB-2774	Descent Inspection	Fair	
CB-2775	Descent Inspection	Fair	
CB-2776	Surface Inspection	Other	
CB-2777	Descent Inspection	Fair	
CB-2778	Descent Inspection	Fair	


Appendix C-2 CCTV Storm Reports

2 to 1 Upstream inspection

SILVER RD STP4370 GT COMMONS TRAVERSE CITY MI Customer Operator Certificate number L su DAVE FERRIS U-1115-07001933 153 Location code Location details H (i) W (i) Shape Material Pre-cleaning Date details Location code Location details H (i) W (i) Shape Material Pre-cleaning Date details Upstream MH UR to I (ft) UG to I (ft) UR to G (ft) Downstream MH DR to I (ft) DG to I Direction Flow control Drainage area Lining method Pjl (ft) Year constr Year renew Video Media label Additional info Media label Additional info	Dwner Urv (ft) Total I (ft) 3.700 Ieaned Pipe use Sw
Street City Constrained SILVER RD STP4370 GT COMMONS TRAVERSE CITY MI Constrained Customer Operator Certificate number L su DAVE FERRIS U-1115-07001933 153 Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of the constrained Upstream MH UR to I (ft) U G to I (ft) UR to G (ft) Downstream MH DR to I (ft) D G to I 1 Image area Lining method Pjl (ft) Year constr Year renew Video Media label Additional info	Dwner Urv (ft) Total I (ft) 3.700 Ieaned Pipe use Sw
SILVER RD STP4370 GT COMMONS TRAVERSE CITY MI Customer Operator Certificate number L su DAVE FERRIS U-1115-07001933 153 Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of Upstream MH UR to I (ft) U G to I (ft) UR to G (ft) Downstream MH DR to I (ft) D G to I 1 Image Image Image Image Pil (ft) Year constr Year renew Video Media label Additional info Media label Additional info	leaned Pipe use
Customer Operator Certificate number L su DAVE FERRIS U-1115-07001933 153 Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of Upstream MH U R to I (ft) U G to I (ft) U R to G (ft) Downstream MH D R to I (ft) D G to I 1 Image	Ieaned Pipe use
DAVE FERRIS U-1115-07001933 153 Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of Upstream MH UR to I (ft) U G to I (ft) UR to G (ft) Downstream MH DR to I (ft) D G to I 1 Image Image Image Image Image Pil (ft) Year constr Year renew Upstream Not Controlled Image Image Image Image Image Additional info Video Media label Additional info Image	Ieaned Pipe use
Location code Location details H (i) W (i) Shape Material Pre-cleaning Date of 12 12 Circular RCP N Indexter of the state of	leaned Pipe use
Index Index <th< td=""><td>SW</td></th<>	SW
Upstream MH U R to I (ft) U G to I (ft) U R to G (ft) Downstream MH D R to I (ft) D G to I 1	
1 2 Direction Flow control Drainage area Lining method Upstream Not Controlled Video Media label Additional info	(ft) DR to G (ft
Direction Flow control Drainage area Lining method Pjl (ft) Year constr Year renew Upstream Not Controlled Media label Additional info Video Media label Additional info # <dev>STM1_2395_03_02_2023.mpg Image area Image area</dev>	
Upstream Not Controlled Image: Controlled Video Media label Additional info # <dev>STM1_2395_03_02_2023.mpg Image: Controlled Image: Controlled</dev>	
Video Media label Additional info # <dev>STM1_2395_03_02_2023.mpg</dev>	ed
# <dev>STM1_2395_03_02_2023.mpg</dev>	
# <dev>STM1_2395_03_02_2023.mpg</dev>	Purpose She
Dist (ft) Code CD Observation At V1 V2 % St O&M Jt Re	
	marks Im
<start inspection=""></start>	
0.0 AMH Manhole Starting manh	iole: 2
0.0 MWL Miscellaneous Water Level 5.000	
153.7 AMH Manhole Finishing mar	nhole:
<complete inspection=""></complete>	

2 to 1 Upstream inspection

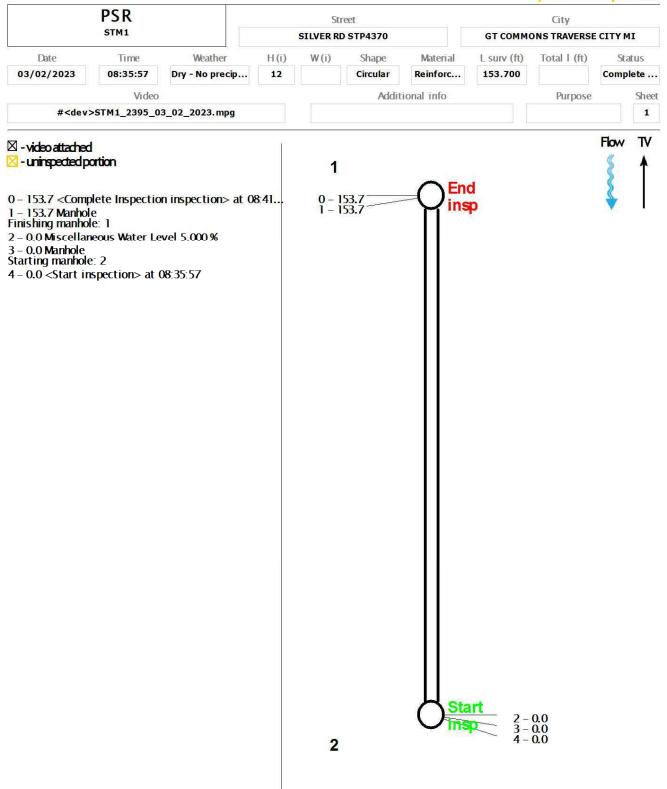

Structural													
Grade 1	Grade 2	Rating	Quick	Index									
0	0	0	0	0	0.0	0000	0.0						

O&M											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	0	0	0	0	0.0	0000	0.0				

Overall												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	0	0	0	0	0.0	0000	0.0					

Page 1 of 1 [03/06/2023 15:05:30] Ininspected portion

Flow Mon

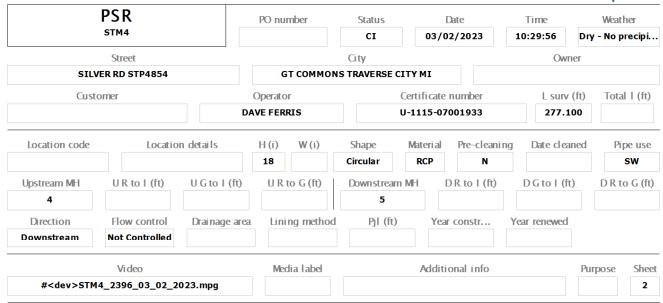

 image attached Noteo attached ₽

AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

NO-VISION

PlanView of PACP 7.0 inspection

2 to 1 Upstream inspection

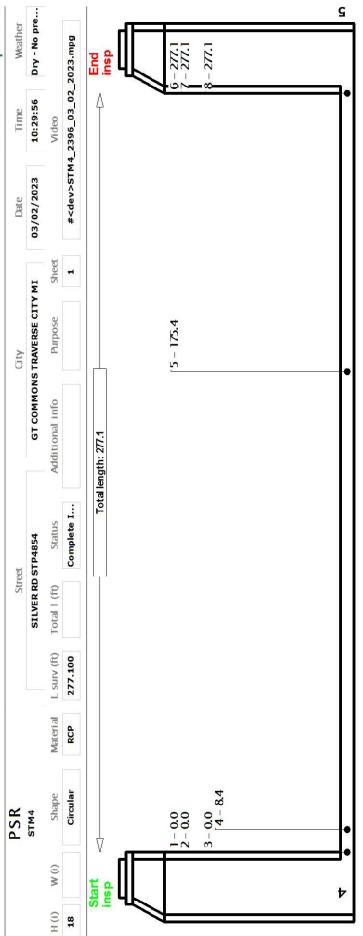


4 to 5 Downstream inspection

		P	SR			DO	nun	abor	C+	atus			ate			Time	uean	Weath	
			M4			FU	nun	IDCI		CI	03		2/2023	3):29:5	6 Dr	y - No pr	
			Street						City			•	•				Owner		•
	SI		RD STP4854				GT	гсоммо			ТҮМІ						Owner		
						000											-un/(ft)	Total	1 (fr)
	Cu	stome	er				rator FERR				ertifica						surv (ft) 77.100	TOLA	l (ft)
								13			-1115	-070	01955	·			//.100		
Locati	ion code		Locatio	n details		Н(i)	W (i)	Sha	pe	Materi	al	Pre-c	lear	ning	Date	cl eaned	Pip	e use
						18	3		Circu	lar	RCP			N					SW
Upstrea	am MH		UR to I (ft)	U G to	l (ft)	l	JRt	o G (ft)	Dow	nstream	MH	D	R to I	(ft))	D G to	l (ft)	D R to) G (ft)
4					. (,			0 0 (19		5				()		0.010	. ()		0 (10)
Direc			Flow control	Draina	10 2502		Linir	ng metho	d	Dil (ft)			constr		Vor	r rene	und		
Downs			ot Controlled	Drai na	ye area			ig metrio		Pjl (ft)	יר	rear	consu		rea	r rene	wea		
bowna	in cam		or controlled																
			Video				Med	ia label			Ado	ditio	nal in	fo			Pu	rpose	Sheet
#<	<dev>S1</dev>	M4_2	2396_03_02_2	023.mpg															1
Dist (ft)	Code	CD	Obse	rvation		At		V1	V2	%		St	O&M	Jt		R	emarks		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>															
0.0	AMH		Manhole												Startin	g man	hole: 4		
0.0	MWL		Miscellaneous	s Water Lev	vel					0.00	00								
8.4	DSC	SO1	Deposits Sett	ed Hard/C	òm	4	8			25.0	00		4						
175.4	RTJ		Roots Tap Joi	int		9				5.00	00		2	Y					
277.1	DSC	F01	Deposits Sett	ed Hard/C	òm	4	8			25.0	00		4						
277.1	AMH		Manhole												Finish	ing m	anhole:		
															5				
			<complete in<="" td=""><td>spection></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>	•														

4 to 5 Downstream inspection

Structural													
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index												
0	0	0	0	0	0.0	0000	0.0						


O&M											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	2	0	216	0	218.0	4121	4.0				

Overall											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	2	0	216	0	218.0	4121	4.0				

1 - 0.0 <5tart inspection> at 10.29.56
2 - 0.0 Manhole
Starting manhole: 4
3 - 0.0 Miscellaneous Water Level 0.000%
3 - 0.0 Miscellaneous Water Level 0.000%
4 A Deposits Settled Hard/Compacted 25.000% At 4 To 8
7.1 1 Deposits Settled Hard/Compacted 25.000% At 4 To 8
7.277.1 Manhole

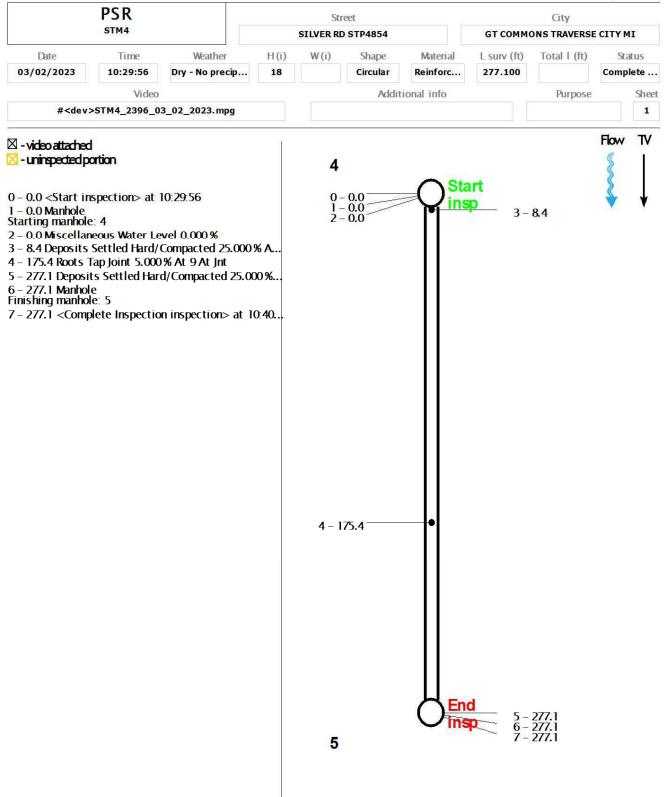
finishing markole: 5 8 – 277.1 <Complete Inspection inspection> at 10:40.57

Flow 📎

2

Ininspected portion

 image attached Noteo attached Page 1 of 1 [03/06/2023 15:05:30]

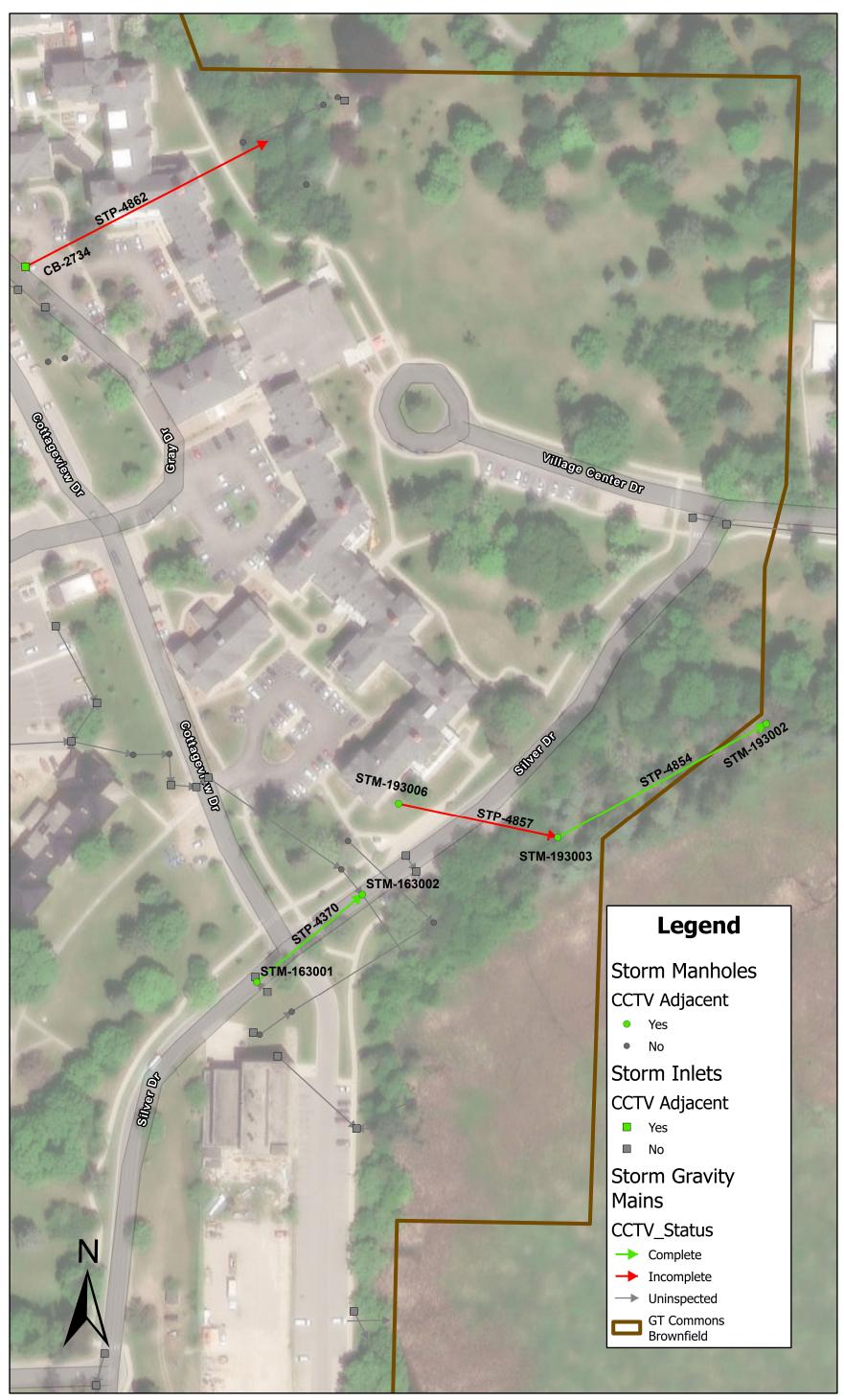

AssetDM5 Offlice (PACP+LACP 7.0) 10.1.54

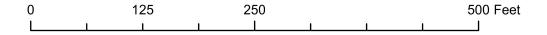
UOISTV-OIL

www.trio-vision.com

PlanView of PACP 7.0 inspection

4 to 5 Downstream inspection




AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

trio-vision

Appendix C-3 CCTV Storm Map

GT Commons Storm Sewer CCTV

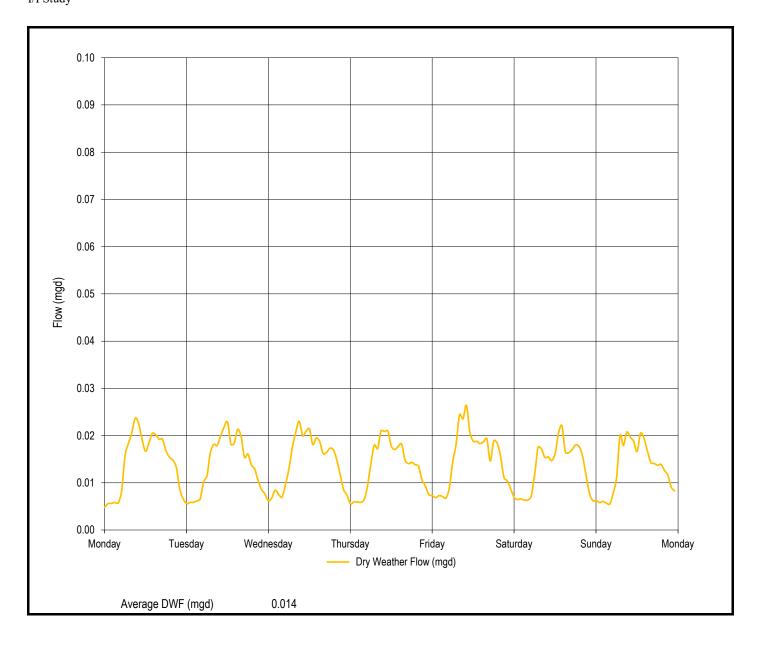
Appendix D — Sanitary System Figures

Appendix D-2 Rain Hyetographs

Appendix D-3 NOAA Atlas 14 rainfall table for Traverse City Michigan

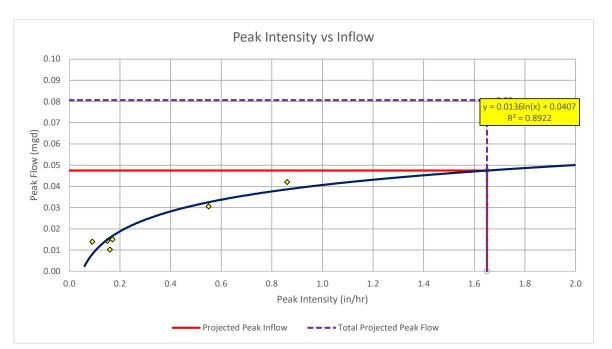
	PD	S-based pre	ecipitation fr	equency es	timates with	n 90% confic	lence interv	als (in inche	s/hour) ¹	
Duration					Average recurren	ce interval (years)				
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	3.32	3.95	4.99	5.87	7.09	8.05	9.04	10.0	11.4	12.4
	(2.77-4.01)	(3.29-4.76)	(4.14-6.04)	(4.84-7.12)	(5.62-8.88)	(6.20-10.2)	(6.68-11.7)	(7.07-13.4)	(7.66-15.6)	(8.11-17.2)
10-min	2.44	2.89	3.65	4.30	5.20	5.90	6.61	7.35	8.33	9.10
	(2.03-2.93)	(2.41-3.49)	(3.03-4.42)	(3.54-5.21)	(4.11-6.50)	(4.54-7.48)	(4.89-8.59)	(5.17-9.79)	(5.60-11.4)	(5.93-12.6)
15-min	1.98	2.35	2.97	3.49	4.22	4.80	5.38	5.97	6.78	7.39
	(1.65-2.38)	(1.96-2.84)	(2.46-3.59)	(2.88-4.24)	(3.34-5.29)	(3.69-6.08)	(3.98-6.98)	(4.20-7.96)	(4.56-9.27)	(4.82-10.3)
30-min	1.41	1.69	2.14	2.52	3.04	3.44	3.85	4.27	4.83	5.25
	(1.18-1.70)	(1.40-2.03)	(1.77-2.58)	(2.07-3.05)	(2.40-3.80)	(2.65-4.36)	(2.85-5.00)	(3.00-5.69)	(3.24-6.60)	(3.43-7.29)
60-min	0.928	1.10	1.40	1.65	2.02	2.31	2.62	2.94	3.38	3.72
	(0.774-1.12)	(0.918-1.33)	(1.16-1.69)	(1.36-2.00)	(1.60-2.54)	(1.78-2.94)	(1.94-3.41)	(2.07-3.93)	(2.27-4.63)	(2.43-5.17)
2-hr	0.575	0.680	0.862	1.02	1.26	1.45	1.65	1.87	2.17	2.41
	(0.484-0.686)	(0.572-0.812)	(0.722-1.03)	(0.851-1.23)	(1.01-1.58)	(1.13-1.84)	(1.24-2.14)	(1.33-2.49)	(1.47-2.96)	(1.58-3.32)
3-hr	0.430	0.504	0.637	0.758	0.939	1.09	1.25	1.43	1.68	1.88
	(0.364-0.510)	(0.426-0.599)	(0.536-0.759)	(0.633-0.906)	(0.760-1.18)	(0.856-1.38)	(0.943-1.62)	(1.02-1.90)	(1.15-2.29)	(1.24-2.58)
6-hr	0.258	0.297	0.370	0.439	0.546	0.638	0.738	0.848	1.01	1.14
	(0.220-0.303)	(0.253-0.350)	(0.314-0.437)	(0.370-0.520)	(0.448-0.681)	(0.506-0.803)	(0.561-0.950)	(0.613-1.12)	(0.695-1.36)	(0.756-1.55)
12-hr	0.149	0.169	0.207	0.243	0.300	0.349	0.403	0.463	0.550	0.621
	(0.129-0.174)	(0.146-0.197)	(0.178-0.242)	(0.207-0.286)	(0.249-0.372)	(0.280-0.436)	(0.310-0.516)	(0.338-0.608)	(0.383-0.740)	(0.417-0.841)
24-hr	0.085	0.096	0.116	0.135	0.165	0.192	0.220	0.252	0.298	0.336
	(0.074-0.098)	(0.083-0.111)	(0.100-0.134)	(0.116-0.157)	(0.138-0.203)	(0.155-0.237)	(0.171-0.279)	(0.186-0.328)	(0.209-0.398)	(0.227-0.451)
2-day	0.048	0.054	0.065	0.076	0.092	0.106	0.122	0.139	0.164	0.184
	(0.042-0.054)	(0.047-0.061)	(0.057-0.074)	(0.066-0.087)	(0.078-0.112)	(0.087-0.130)	(0.095-0.153)	(0.103-0.180)	(0.116-0.217)	(0.126-0.246)
3-day	0.035	0.039	0.047	0.054	0.065	0.075	0.086	0.098	0.115	0.129
	(0.030-0.039)	(0.034-0.044)	(0.041-0.053)	(0.047-0.062)	(0.055-0.079)	(0.062-0.092)	(0.068-0.107)	(0.073-0.126)	(0.082-0.152)	(0.088-0.171)
4-day	0.028	0.031	0.037	0.043	0.051	0.059	0.067	0.076	0.089	0.099
	(0.025-0.032)	(0.028-0.035)	(0.033-0.042)	(0.037-0.049)	(0.044-0.062)	(0.048-0.071)	(0.053-0.083)	(0.057-0.097)	(0.063-0.117)	(0.068-0.132)
7-day	0.019	0.021	0.025	0.028	0.033	0.037	0.042	0.047	0.054	0.060
	(0.017-0.021)	(0.019-0.024)	(0.022-0.028)	(0.025-0.032)	(0.028-0.039)	(0.031-0.045)	(0.033-0.052)	(0.035-0.060)	(0.039-0.071)	(0.042-0.079)
10-day	0.015	0.017	0.020	0.022	0.026	0.029	0.032	0.036	0.040	0.044
	(0.014-0.017)	(0.015-0.019)	(0.018-0.022)	(0.020-0.025)	(0.022-0.030)	(0.024-0.034)	(0.026-0.039)	(0.027-0.045)	(0.029-0.052)	(0.031-0.058)
20-day	0.011	0.012	0.013	0.015	0.017	0.019	0.020	0.022	0.024	0.026
	(0.010-0.012)	(0.010-0.013)	(0.012-0.015)	(0.013-0.016)	(0.015-0.019)	(0.015-0.022)	(0.016-0.024)	(0.017-0.027)	(0.018-0.031)	(0.018-0.034)
30-day	0.009	0.010	0.011	0.012	0.014	0.015	0.016	0.017	0.019	0.020
	(0.008-0.010)	(0.009-0.010)	(0.010-0.012)	(0.011-0.013)	(0.012-0.015)	(0.012-0.017)	(0.013-0.019)	(0.013-0.021)	(0.014-0.024)	(0.014-0.026)
45-day	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.015
	(0.007-0.008)	(0.007-0.009)	(0.008-0.010)	(0.009-0.011)	(0.010-0.013)	(0.010-0.014)	(0.010-0.015)	(0.010-0.017)	(0.011-0.018)	(0.011-0.020)
60-day	0.006	0.007	0.008	0.009 (0.008-0.009)	0.010 (0.008-0.011)	0.010 (0.009-0.012)	0.011 (0.009-0.013)	0.012 (0.009-0.014)	0.012 (0.009-0.016)	0.013 (0.009-0.017)

Appendix D-3 NOAA Atlas 14 Rainfall Data for Grand Traverse Commons


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

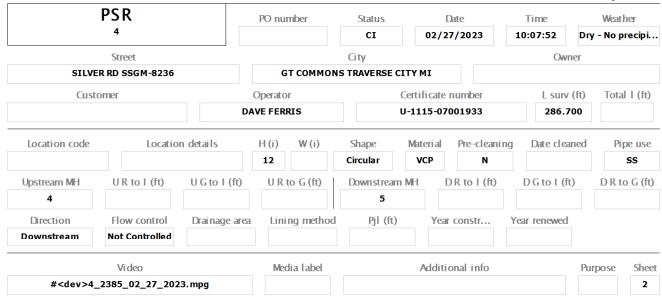

Appendix D-4 Dry Weather Flow Hydrographs

Grand Traverse Commons - Dry Weather Flow City of Traverse City I/I Study

Appendix D-5 RDII

Event #	Date	Peak I	Total	Duration	Inflow (mgd)
1	8/1/2022	0.86	0.86	1	0.042
2	8/8/2022	0.55	0.97	2.5	0.031
3	11/13/2022	0.16	0.33	4	0.010
4	12/15/2022	0.17	0.33	3	0.015
5	1/3/2023	0.15	0.22	2.5	0.014
6	1/19/2023	0.09	0.43	8.5	0.014
7	2/7/2023	0.14	0.29	3.5	0.018
8	2/9/2023	0.18	0.54	5.5	0.022
9					
10					
11					
12					
13					
14					
15					
16					

Meter Name		SS	M-1651	
Tributary Distric	ts			
Meter District				
Pipe Size (in)			10	
Total Upstream	Area (ac)			
Peak Hour Dry V	Veather Flow		0.033	mgd
(Projected Peak	Hour Intensity		1.65	in/hr)
10-yr Projected	Peak Inflow		0.05	mgd
Total Projected	Peak Flow		0.08	mgd
Inch-miles			0.83	
RDII (gpd/inch-n	nile)		57242	
Approximate Po	pulation		400	рор
Inflow (gpcd)			118.8	gpcd
District		does NOT have	excessive Infil	tration
Approximate Dr	y Weather Flow	v	0.01	mgd
Infiltration (gpc	d)		33.5	gpcd
District		does NOT have	excessive Infil	tration
Notes:				

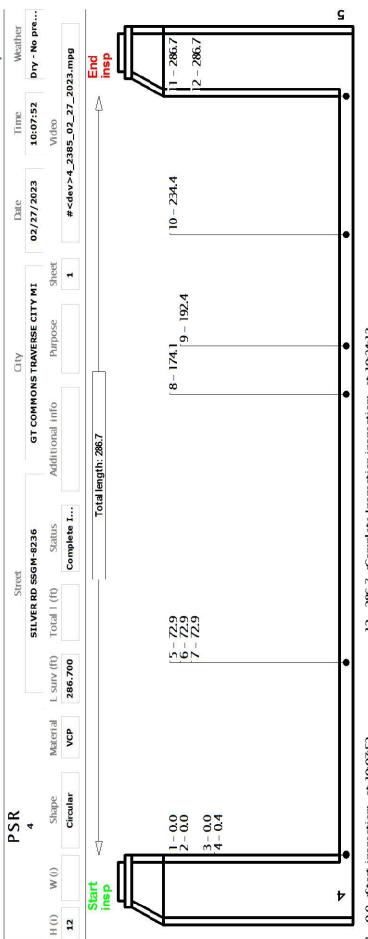

Appendix D-6 CCTV Sanitary Reports

4 to 5 Downstream inspection

[DOWIDU		lipe	Cuon
			SR		PC) nur	nber		atus		ate		Time		Weath	
			4						CI	02/2	7/2023		10:07:52	Dr	y - No pr	ecipi
		9	Street					City					Ov	/ner		
	SIL	VER R	D SSGM-8236			G	т соммо	NS TRAV	ERSE CITY M	I						
	Cu	stome	er		Ор	erato	r		Certif	i cate I	number		L sur	v (ft)	Total	l (ft)
				D	AVE	FERF	us		U-111	5-070	01933		286.	700		
Locat	ion code)	Locatio	n details		(i) .2	W (i)	Shaj Circu			Pre-cl	eanin N	g Date cle	aned		e use SS
Upstrea 4			UR to I (ft)	UG to I (ft)		URt	to G (ft)	Dow	nstream MH 5	D	R to I	(ft)	DGtol(ft)	D R to	G (ft)
Direc	tion		low control	Drainaga ara		Lini	ng math a	l		Vaar	constr		Voor rongung	J		
Direc			Flow control ot Controlled	Drainage are	1	LINII	ng methoo	1	Pjl (ft)	Year	constr.		Year renewed	1		
			Video			Med	lia label		Α	dditio	onal inf	0		Pu	rpose	Sheet
	# <dev></dev>	4_238	35_02_27_202	23. mpg												1
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M	Jt	Rem	arks		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>												
0.0	AMH		Manhole									Sta	arting manho	le:4		
0.0	MWL		Miscellaneous	s Water Level					15.000							
0.4	FC		Fracture Circu	imferenti al	7	5				2						
72.9	JSL		Joint Separate	ed Large						4						
72.9	ISSR		Intruding Sea	ling Material	6	6			0.000		2					
72.9	MMC		Miscellaneous	s Material Cha									terial change CP	s TO		
174.1	MWL		Miscellaneous	s Water Level					25.000							
192.4	MWL		Miscellaneous	s Water Level					15.000							
234.4	MMC		Miscellaneous	s Material Cha									terial change CP	s TO		
286.7	AMH		Manhole									Fir	nishing manh	ole:		
												5				
			<complete in<="" th=""><th>ispection></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></complete>	ispection>												

4 to 5 Downstream inspection

	Structural													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index							
0 2 0 4 0 6.0 4121 3.0														

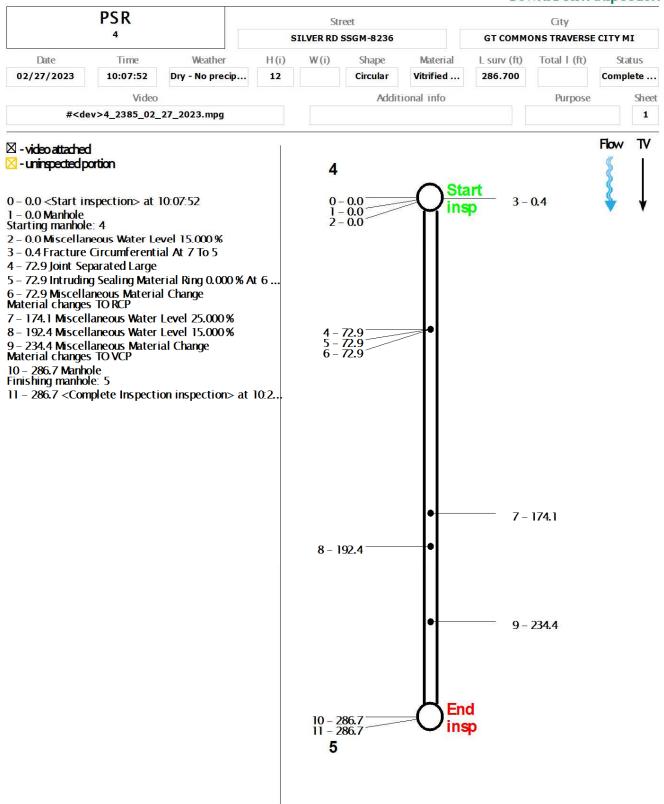

O&M												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	2	0	0	0	2.0	2100	<mark>2.0</mark>					

Overall												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	4	0	4	0	8.0	4122	2.7					

1 - 0.0 Start inspection> at 10.07.52 12. 2 - 0.0 Manhole: 4 Starting manhole: 4 3 ta 0.0 Miscellaneous Water Level 15.000% 4 - 0.4 Fracture Circumferential At 7 To 5 5 - 72.9 Joint Separated Large 6 - 72.9 Intruding Sealing Material Ring 0.000 % At 6 To 6 Material Champe Material Champe 9 - 192.4 Miscellaneous Material Champe Material Champe 9 - 192.4 Miscellaneous Material Champe Material Champe 10 - 234.4 Miscellaneous Material Champe Material Champe 11 - 286.7 Marhole Finishing marhole: 5

12 - 286.7 <Complete Inspection inspection> at 10:24:13

Flow 2 Ininspected portion image attached Noteo attached

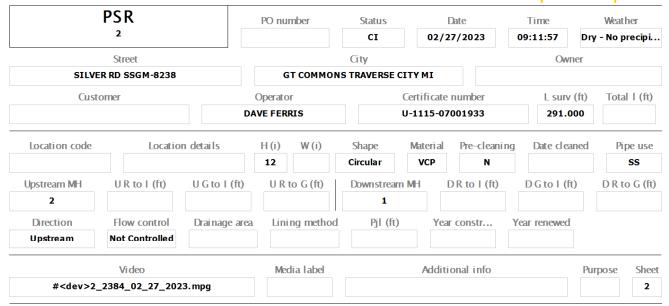

Page 1 of 1 [03/06/2023 15:05:26]

AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

CORV-OIL

PlanView of PACP 7.0 inspection

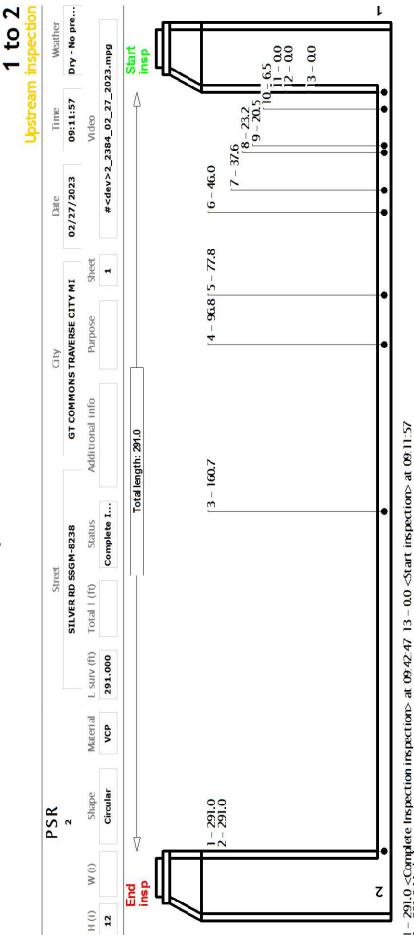
4 to 5 Downstream inspection



1 to 2 Upstream inspection

		_	- D	I													bu ca			
			SR		P) nun	nber		Stat	us		Date				Time	2		Weath	er
			2						C	I	02	/27/2)23		09	:11:	57	Dry	- No pr	ecipi
		9	Street					С	ity								Owne	r		
	SIL	VER R	D SSGM-8238			G	т соммо	NS TI	RAVE	RSECIT	YMI									
	Cu	stome	er		Ор	erator	r			Ce	rtifica	te num	ber			L	surv (1	ft)	Total	l (ft)
				D	AVE	FERR	us			U-1	1115-	07001	933				291.00	0		
Locat	ion code	3	Locatio	n details		(i)	W (i)		shape		/ ateria	l Pro		eanin	g	Dat	e clean	ed	_	e use
					1	2		Ci	ircula	ar	VCP			N						SS
	am MH		UR to I (ft)	UG to I (ft)		URt	oG(ft)	D)own	stream M	H	DR t	b I	(ft)	E) G t	o I (ft)		D R to	G (ft)
2	2									1										
Direc	tion		Flow control	Drainage are	a	Linir	ng metho	d	P	jl (ft)	Y	ear cor	str.		Year	r ren	ewed			
Upst	ream	N	ot Controlled																	
			Video			Mod	ia label				Add	itional	inf					Dur	pose	Sheet
	# <dev></dev>	2 239	84_02_27_202	3.mpa		INICO	nd raljer				Aud	UUIdl	111	0				Ful	hoad	1
Dist (ft)	Code	CD	Ohse	rvation	At		V1	V2)	%		St O8	M	. If			Remark	6		Img
Dist(It)	Couc	00	<start inspect<="" td=""><td></td><td>~</td><td></td><td>••</td><td>•2</td><td>-</td><td>/0</td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td>ing</td></start>		~		••	•2	-	/0				~						ing
0.0	AMH		Manhole											Sta	artino	g ma	anhole:	1		
0.0	MML		Miscellaneous	5 Water Level						10.000	D					5				
6.5	FS		Fracture Spira	1	3	6						3								
20.5	JAM		Joint Angular	Medium								3								
23.2	MML		Miscellaneous	5 Water Level						45.000	D									
37.6	MML		Miscellaneous	s Water Level						20.000	D									
46.0	DSZ	SO1	Deposits Settl	ed Other	3	9				30.000	D	4	ł	DE	BRI					
77.8	DSZ	F01	Deposits Settl	ed Other	3	9				30.000	D		ŀ	DE	BRI					
96.8	MML		Miscellaneous	5 Water Level						10.000	D									
160.7	MML		Miscellaneous	5 Water Level						35.000	D									
291.0	AMH		Manhole												nishi	ing I	manhol	e:		
			(Council at a feat											2						
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>																
													_							

1 to 2 Upstream inspection


Structural													
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index												
0	0 0 6 0 0 6.0 3200 3.0												

O&M												
Grade 1	Grade 2	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	0	0	24	0	24.0	4600	4.0					

Overall												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	0	6	24	0	30.0	4632	3.8					

CrossSection of PACP 7.0 inspection

1 - 291.0 <Complete Inspection inspection> at 09.42.47 13 - 0.0 <Start inspection> at 09.11:57 2 - 291.0 Marhole Finishmone 2 160.7 Miscellaneous Water Level 35.000% 4 - 96.8 Miscellaneous Water Level 10.000% 5 - 77.8 Deposits Settled Other 30.000 %At 3 To 9

DEBR

6-46.0 Deposits Settled Other 30.000 % At 3 To 9 DEBR

237.6 Miscellareous Water Level 20.000%
23.2 Miscellareous Water Level 45.000%
20.5 Joint Angular Medium
10 - 6.5 Fracture Spiral At 3 To 6
11 - 0.0 Miscellareous Water Level 10.000%
12 - 0.0 Marthole: 1

image attached

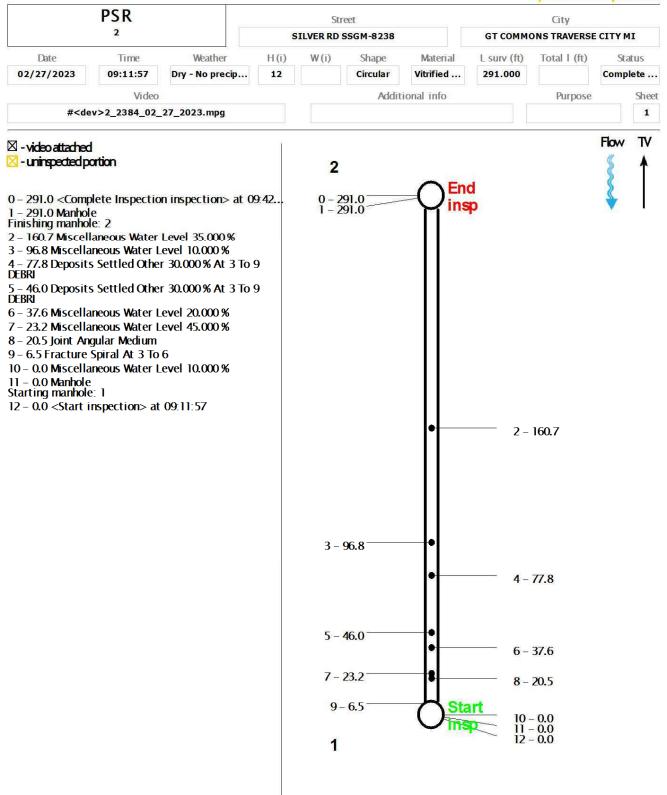
Noteo attached

Ininspected portion

Page 1 of 1 [03/06/2023 15:05:26]

≥

Flow Not

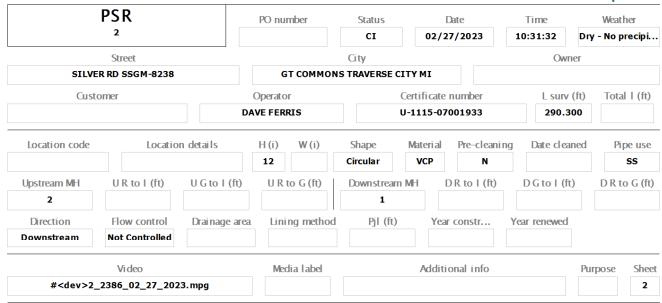

AssetDMS Office (PACP+LACP 7.0) 10.1.54

www.trio-vision.com

UOISIV-OIL

PlanView of PACP 7.0 inspection

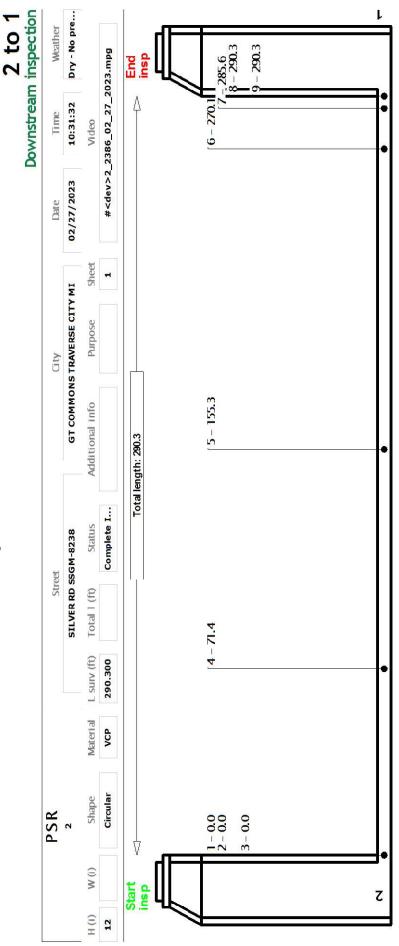
1 to 2 Upstream inspection



2 to 1 Downstream inspection

				1															Cuon
			SR			PO nu	mber		Status			ate			Time			Weath	
			2						CI		02/27	7/2023	3	10):31:	32	Dry	- No pr	ecipi
		9	Street					Ci	t y							Owne	er -		
	SIL	VER RI	D SSGM-8238			G	т соммо	ONS TR	AVERSE	CITY	MI								
	Cu	stome	r		0	perato	r			Certi	ificate r	numbe	r		I	surv (ft)	Total	l (ft)
					DAV	E FER	RIS			U-11	15-070	01933	8			290.30	0		
Locat	ion code		Locatio	n details	I	H (i)	W (i)	Sł	ape	Mat	teri al	Pre-c	lean	ing	Dat	e clean	ed	Pip	e use
						12		Cir	cular	V	/СР		N						55
Upstre	am MH		UR to I (ft)	U G to I (1	ft)	UR	to G (ft)	Do	wnstrear	n MH	D	R to I	(ft)		DGt	o I (ft)		D R to	G (ft)
	2								1				(/						- ()
Direc	tion		low control	Drainage	area	Lini	ng metho	d L	Pjl (ft)		Year	constr		Yea	ar ren	ewed			
	stream		ot Controlled	Dramage			ing metric		1)1 (10)	,	T COI	consu			u icii	circu			
			Video			Me	dia Tabel				Additio	onal in	fo				Pur	pose	Sheet
	# <dev></dev>	2_238	36_02_27_202	3. mpg															1
Dist (ft)	Code	CD		rvation		¥t	V1	V2		%	St	O&M	Jt			Remark	s		Img
0.0	ANALI		<start inspect<br="">Manhole</start>	lion>										Startin		mholo	2		
0.0	AMH MWL		Miscellaneous	Whether Louis					10	.000				Startin	ig ma	anhole:	2		
71.4	MWL		Miscellaneous							.000									
155.3	MML		Miscellaneous							.000									
270.1	JAM		Joint Angular						10	.000	3								
285.6	FS		Fracture Spira			69					3		Y						
290.3	AMH		Manhole								J			Finish	ina i	nanhol	e [.]		
250.5	/ •••		Manifore											1	ing i		•		
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></complete>	spection>										-					

2 to 1 Downstream inspection

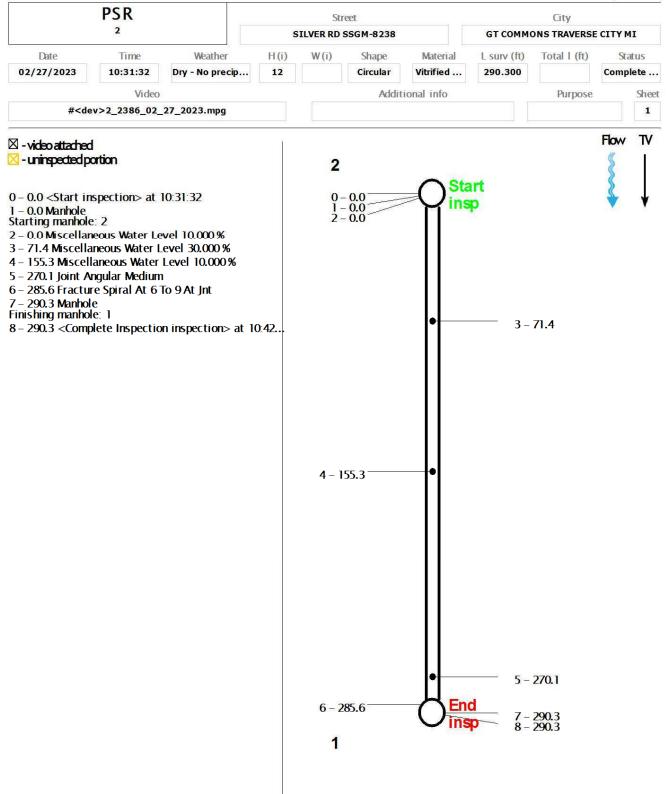

	Structural													
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index													
0	0 0 6 0 0 6.0 3200 3.0													

O&M										
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index			
0	0	0	0	0	0.0	0000	0.0			

Overall											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	0	6	0	0	6.0	3200	3.0				

0.0 <5tart inspection> at 10.31:32
 0.0 Marthale
 5 acting marthale
 3 acting marthale
 2 = 0.0 Marthale
 2 = 0.0 Marcellareous Water Level 10.000%
 71.4 Mscellareous Water Level 30.000%
 5 = 155.3 Mscellareous Water Level 30.000%
 6 = 270.1 joint Angular Medium
 2 = 285.6 Fracture Spiral At 6 To 9 At Jnt
 8 = 290.3 Marthole

Finishing manhole: 1 9-290.3 <Complete Inspection inspection> at 10:42:28

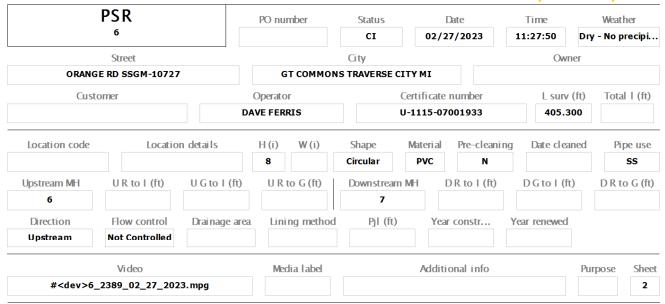

Flow S 2 Ininspected portion image attached Noteo attached

Page 1 of 1 [03/06/2023 15:05:27]

AssetDM5 Offlice (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

UOISTV-OIL

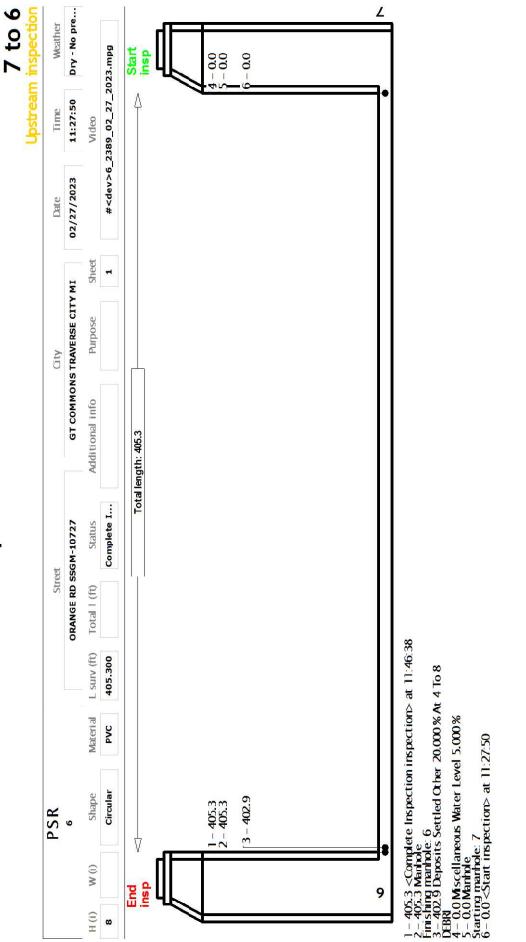
2 to 1 Downstream inspection


AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

7 to 6 Upstream inspection

		_														ii ispe	
			SR		PC) nun	nber	Sta	tus		Date		Tin	ne		Weath	er
			6					0	I	02/2	7/202	3	11:27	:50	Dry	- No pr	ecipi
		5	Street					City						Own	er		
	ORAN	IGE RI	D SSGM-10727			G	г соммог	NS TRAV	ERSE CITY	MI							
	Cu	stome	r		Оре	erator	-		Cert	tificate	numbe	r		L surv	(ft)	Total	l (ft)
				DA	VE	FERR	IS		U-1	115-07	001933	3		405.3	00		
																-	
Locati	on code		Location	n details	Н		W (i)	Shap		ateri al	Pre-c		ning Da	ate clea	ned		e use
					8	3		Circu	lar	PVC		N					SS
Upstrea			UR to I (ft)	UG to I (ft)		URt	o G (ft)	Dow	nstream M		OR to I	(ft)	DG	to I (ft)	D R to	G (ft)
6									7								
Direct	tion		low control	Drainage area		Linir	ng method		Pjl (ft)	Yea	const	·	Year re	newed			
Upstre	eam	Ν	ot Controlled														
			Video			Mod	ia label			Additi	onalin	fo			Dur	pose	Sheet
#	# <dev></dev>	6_238	89_02_27_202	3.mpg		IVICU				Auun		10			rul	poac	1
		-															
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M	Jť		Rema	ks		Img
2.01(.1)			<start inspect<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>														
0.0	AMH		Manhole										Starting r	nanhole	: 7		
0.0	MWL		Miscellaneous	Water Level					5.000								
402.9	D&Z		Deposits Settl	ed Other	4	8			20.000		3		DEBRI				
405.3	AMH		Manhole										Finishing	manho	le:		
													6				
			<complete in<="" th=""><th>spection></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></complete>	spection>													

7 to 6 Upstream inspection


	Structural													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index							
0	0	0	0	0	0.0	0000	0.0							

O&M													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	3	0	0	3.0	3100	3.0						

Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	3	0	0	3.0	3100	3.0						

CrossSection of PACP 7.0 inspection

Page 1 of 1 [03/06/2023 15:05:28] Ininspected portion

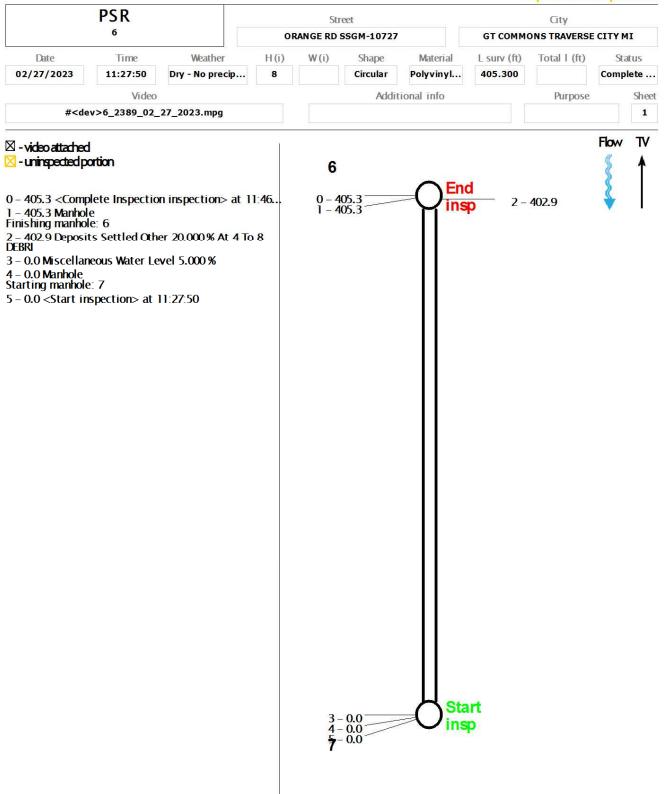
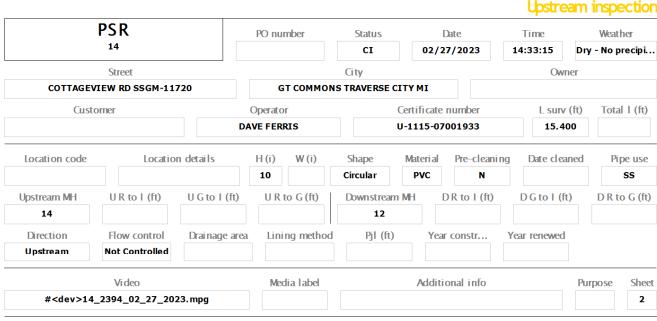

Flow

 image attached X - video attached 2

AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

CORV-OIL

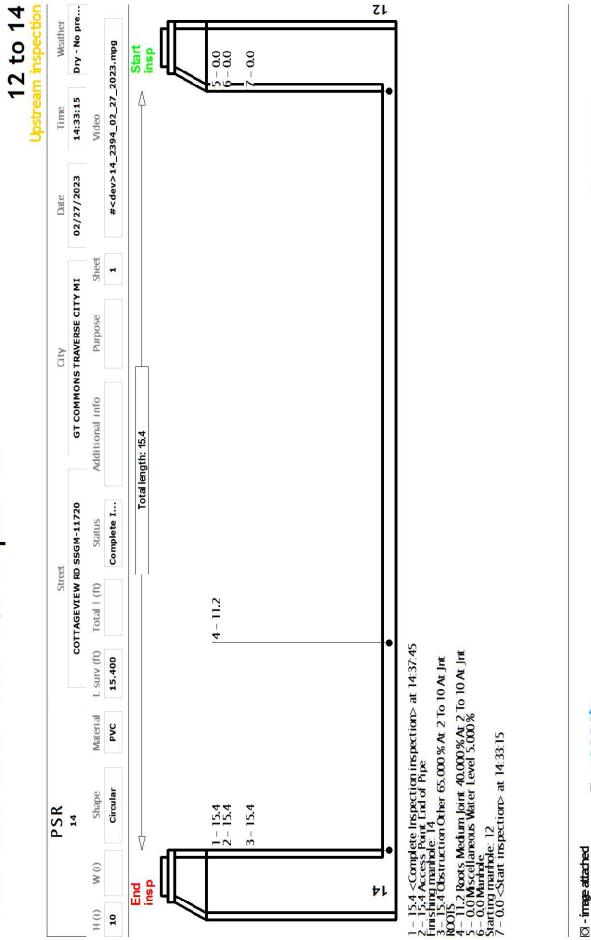
7 to 6 Upstream inspection



12 to 14

														Upstre		ii ispe	
			SR		PO) nur	nber	Sta	tus		Date			Time		Weath	
		1	14					C	I	02/2	7/202	3	1	4:33:15	Dry	- No pr	ecipi
		9	Street					City						Own	er		
	COTTAG	EVIEV	V RD SSGM-11	720		G	гсоммо	NS TRAV	ERSE CIT	YMI							
	Cu	stome	er		Ор	erato	-		Cer	rtificate	numbe	r		L surv	(ft)	Total	l (ft)
					DAVE	FERR	IS		U-1	1115-07	00193	3		15.40	00		
				1 1		(-)							_				
Locat	ion code		Locatio	n details		(i) .0	W (i)	Shap Circul		/lateri al PVC	Pre-(lean N	ing	Date clea	ned		e use SS
Upstrea			UR to I (ft)	U G to I (ft)) 	URt	o G (ft)	Dowr	istream M		OR to	l (ft)		DG to I (ft)	D R to	o G (ft)
14	4								12								
Direc			low control	Drainage ar	ea	Liniı	ng method		Pjl (ft)	Yea	r const	r	Ye	ear renewed			
Upsti	ream	N	ot Controlled														
			Video			Med	ia label			Additi	onal ir	lfo			Рш	pose	Sheet
#	/ <dev>1</dev>	4_23	94_02_27_202	23. mpg			in a second			. assirti							1
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M	Jt		Rema	ks		Img
. ,			<start inspect<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>														
0.0	AMH		Manhole										Starti	ng manhole	r 1		
													2				
0.0	MML		Miscellaneous	s Water Level					5.000								
11.2	RMj		Roots Medium	n Joint	2	10			40.000)	3	Y					
15.4	OBZ		Obstruction O	Other	2	10			65.000)	5	Y	ROO	rs			
15.4	AEP		Access Point	End of Pipe										hing manho	le:		
													14				
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>													

12 to 14


	Structural													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index							
0	0	0	0	0	0.0	0000	0.0							

O&M													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	3	0	5	8.0	513 <mark>1</mark>	4.0						

Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	3	0	5	8.0	5131	4.0						

Page 1 of 1 [03/06/2023 15:05:29]

Flow Not

2

Ininspected portion

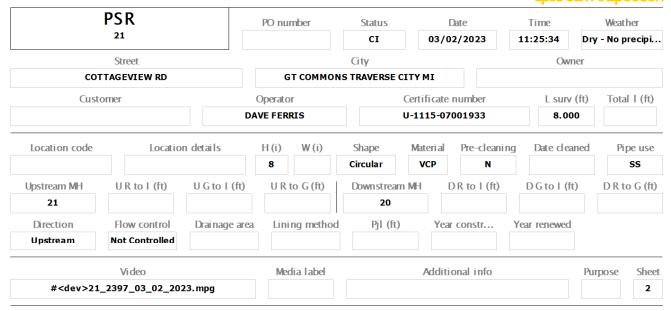
Noteo attached

AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

NO-VISION

12 to 14 Upstream inspection

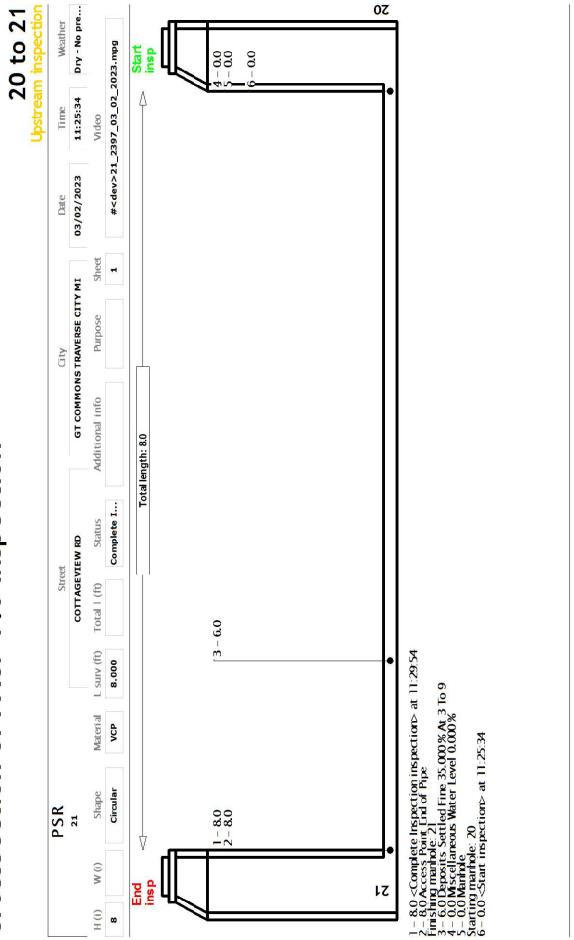
PSR City Street 14 COTTAGEVIEW RD SSGM-11720 GT COMMONS TRAVERSE CITY MI Time Weather Material Date H (i) W(i) Shape L surv (ft) Total | (ft) Status 02/27/2023 14:33:15 10 Circular Polyvinyl... 15.400 Dry - No precip... Complete ... Video Additional info Purpose Sheet #<dev>14_2394_02_27_2023.mpg 1 Flow TV -video attached 🔀 - uninspected portion 14 End 0 - 15.4 < Complete Inspection inspection> at 14:37:45 nsp 1 – 15.4 Access Point End of Pipe Finishing manhole: 14 2 – 15.4 Obstruction Other 65.000 % At 2 To 10 At Jnt ROOIS 3 - 11.2 Roots Medium Joint 40.000% At 2 To 10 At Jnt 4 - 0.0 Miscellaneous Water Level 5.000 % 5 - 0.0 Manhole Starting manhole: 12 6 - 0.0 <Start inspection> at 14:33:15 3 - 11.2 Start 0.0 5-0.0 12 0.0 insp



20 to 21

													•		inspe	
			SR		PO	nun	nber	Sta	itus		ate		Time		Weath	
		2	21					C	I	03/0	2/2023	1	1:25:34	Dry	- No pr	ecipi
		9	Street					City					Own	er		
	С	ΟΤΤΑ	GEVIEW RD			GT	гсоммо	NS TRAV	ERSE CITY N	11						
	Cu	stome	۲ .		Ope	rator			Certi	ficate	number		L surv	(ft)	Total	l (ft)
				DA	VEF	FERR	IS		U-11	15-07	01933		8.00	D		
locati	ion code		Locatio	n details	Н(i)	W (i)	Shap	e Mat	erial	Pre-clea	anina	Date clear	ned	Pip	e use
					8			Circu		СР	N					SS
Upstrea	am MH		UR to I (ft)	UG to I (ft)	ι	JRt	o G (ft)	Dowr	stream MH		R to I (f	t)	DGtol(ft))	D R to	G (ft)
2:									20							
Direc	tion		low control	Drai nage area		linir	ng methoo	1	Pjl (ft)	Year	constr	Ye	ear renewed			
Upstr			ot Controlled] [ginetitet		.]. ()		conotan					
											1: 6					cl .
4	t <dow></dow>	01 33	Video 97_03_02_20:	23 mpg		Med	ia label			ndditio	onal info			Pur	pose	Sheet
+	- <uev></uev>	21_23	<i>97_</i> 03_02_20.	23. mpg												1
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M Jt		Remar	ks		Img
			<start inspect<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>													
0.0	AMH		Manhole									Starti	ng manhole	: 2		
												0	5			
0.0	MML		Miscellaneous	Water Level					0.000							
6.0	DSF		Deposits Settl	ed Fine	3	9			35.000		5					
8.0	AEP		Access Point	End of Pipe								Finis	hing manho	le:		
												21				
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>												

20 to 21 Upstream inspection


	Structural													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index							
0	0	0	0	0	0.0	0000	0.0							

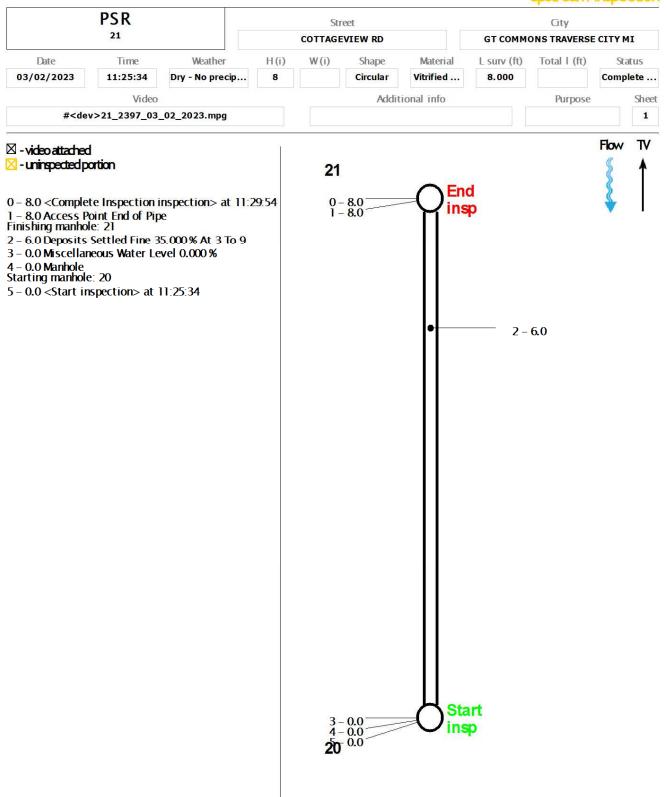
O&M													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	0	0	5	5.0	<mark>510</mark> 0	<mark>5.0</mark>						

Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	0	0	5	5.0	5100	5.0						

Page 1 of 1 [03/06/2023 15:05:30]

Flow

2

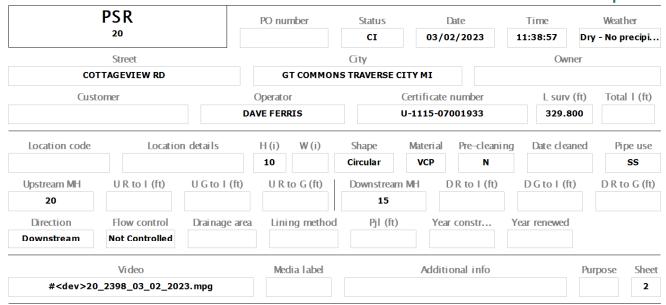

Ininspected portion

O - image attached
 M - video attached

AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

CORV-OIL

20 to 21 Upstream inspection

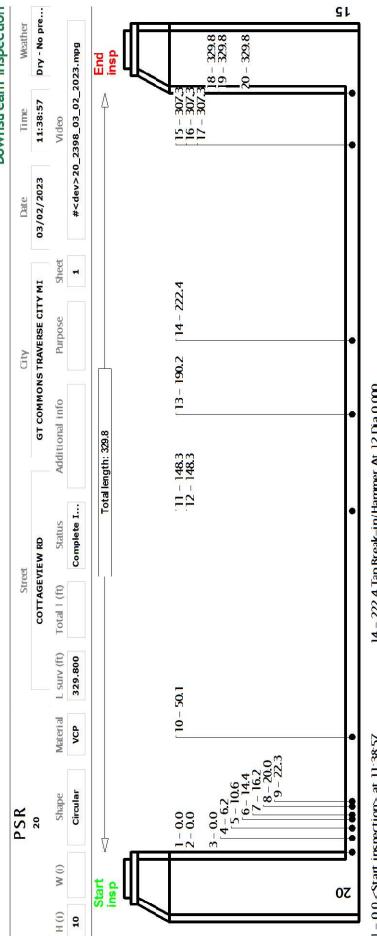


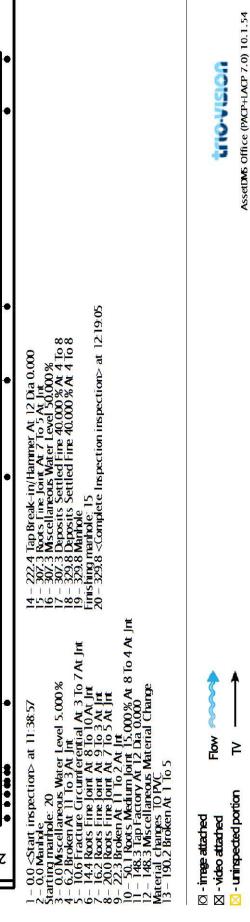
20 to 15 Downstream inspection

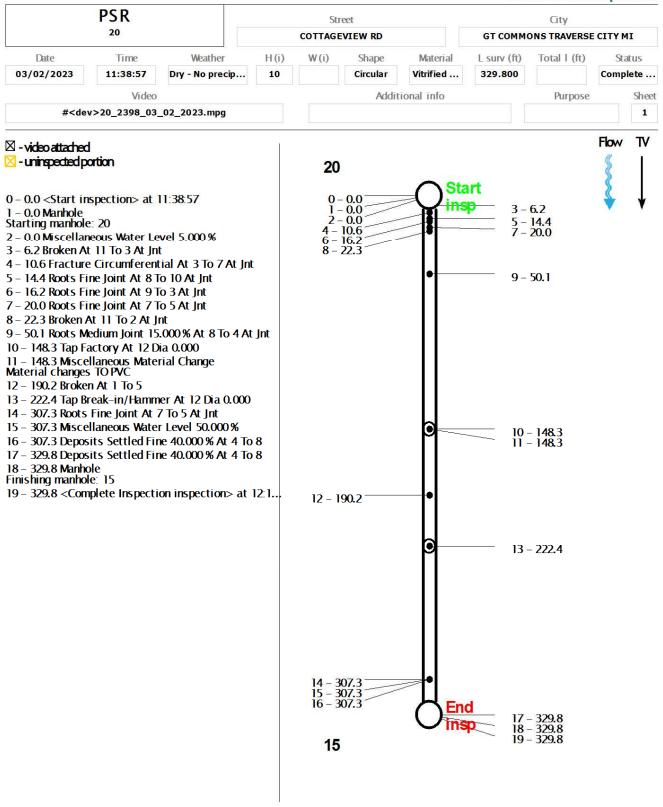
			SR		PO) num	nber		Sta	itus		D	ate			Tin			Weath	
		2	20						C	I	0	3/02	2/202	3	1	11:38	:57	Dry	- No pr	ecipi
		(Street						City								Owi	ner		
	С	οττα	GEVIEW RD			GT	соммо	N	S TRAV	ERSE CIT	ү мэ	[
	Cu	stome	er		Ope	rator				Cer	rtifi	cate r	numbe	r			L surv	(ft)	Total	l (ft)
						FERR				U- 1	111	5-070	0193	3			329.8			
Locat	ion code	3	Location d	etails	H ((i)	W (i)		Shap	e N	/ ate	rial	Pre-c	lea	ning	Da	te clea	ned	Pip	e use
					10	0			Circu	ar	VCI	Р		N						SS
Upstre	am MH		UR to I (ft) U	J G to I (ft)	l	J R to	o G (ft)	1	Dowr	stream M	Н	D	R to I	(ft	:)	DG	to I (f	t)	D R to	G (ft)
2	0									15										
Direc	tion		Flow control	Drainage area		Linin	ig metho	d		Pjl (ft)		Year	const		Y	ear re	newed			
Downs			ot Controlled	<u>-</u>			3			J- (/										
			Video			Medi	a label				Ac	ditic	onal in	fo				Рш	pose	Sheet
4	# <dev>2</dev>	20_23	98_03_02_2023.ı	mpg		- Con													pooe	1
								1												
Dist (ft)	Code	CD	Observat	tion	At		V1		V2	%		St	O&M	Jt			Rema	rks		Img
			<start inspection<="" td=""><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	>																
0.0	AMH		Manhole													ing n	nanhol	e: 2		
															0					
0.0	MWL		Miscellaneous Wa	iter Level						5.000										
6.2	B		Broken		11	3						4		Y						
10.6	FC		Fracture Circumfe	erential	3	7						2		Y						
14.4	RFJ		Roots Fine Joint		8	10							1	Y						
16.2	RFJ	601	Roots Fine Joint		9	3							1	Y Y						
20.0	RFJ B	S01	Roots Fine Joint		7	5						4	1	T Y						
22.3 50.1	RMJ		Broken Boots Madium Io	int	11 8	2 4				15.000	•	4	3	T Y						
148.3	TF		Roots Medium Jo Tap Factory	m	°		0.000			13.000	,		3	•						
148.3	MMC		Miscellaneous Ma	terial Cha	12		0.000										hanges	то		
100.2	D		Drakon			F									PVC					
190.2	B		Broken	and a	1	5	0.000					4								
222.4 307.3	TB RFJ	F01	Tap Break-in/Han Roots Fine Joint		12	5	0.000						1	Y						
307.3	MWL	101	Miscellaneous Wa	ter level	1	5				50.000	•		1	1						
307.3	DSF	\$02	Deposits Settled		4	8				40.000			5							
329.8	DSF	F02			4	8				40.000			5							
329.8	AMH	TOL	Manhole	inc.		U				loroot			3		Finis	hing	manho	ole:		
			<complete inspe<="" td=""><td>ction></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	ction>																

20 to 15 Downstream inspection

	Structural											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	2	0	12	0	14.0	4321	3.5					


O&M												
Grade 1	Grade 2	Grade 3 Grade 4 Grade 5 Rating	Rating	Quick	Index							
59	0	3	0	20	82.0	5431	1.3					


	Overall												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
59	2	3	12	20	96.0	5443	1.4						



www.trio-vision.com

Page 1 of 1 [03/06/2023 15:05:30]

20 to 15 Downstream inspection

THO-VISION

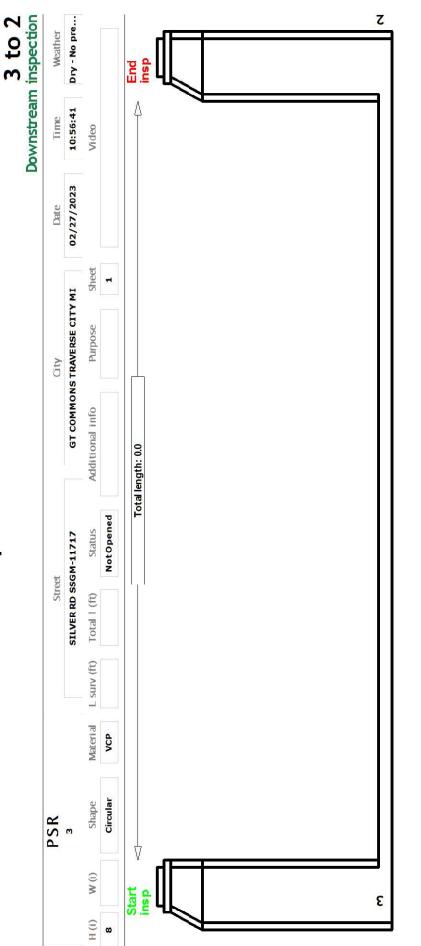
3 to 2 Downstream inspection

	PSR ₃		PO number	Status NO	Date 02/27/2023	Time 10:56:41	Weather Dry - No precipi
SILV	Street		GT COMMON	City S TRAVERSE CI	ТҮМІ	Ow	ner
Cus	tomer		Operator VE FERRIS	_	ertificate number -1115-07001933	L surv	r (ft) Total I (ft)
Location code	Location	n details	H (i) W (i)	Shape Circular	Material Pre-clean	ing Date cle	aned Pipe use
Upstream MH 3	UR to I (ft)	U G to I (ft)	U R to G (ft)	Downstream I	MH DR to I (ft)	DGtol(t) DR to G (ft)
Direction Downstream	Flow control Not Controlled	Drai nage area	Lining method	Pjl (ft)	Year constr	Year renewed	
	Video		Media label		Additional info		Purpose Sheet

AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

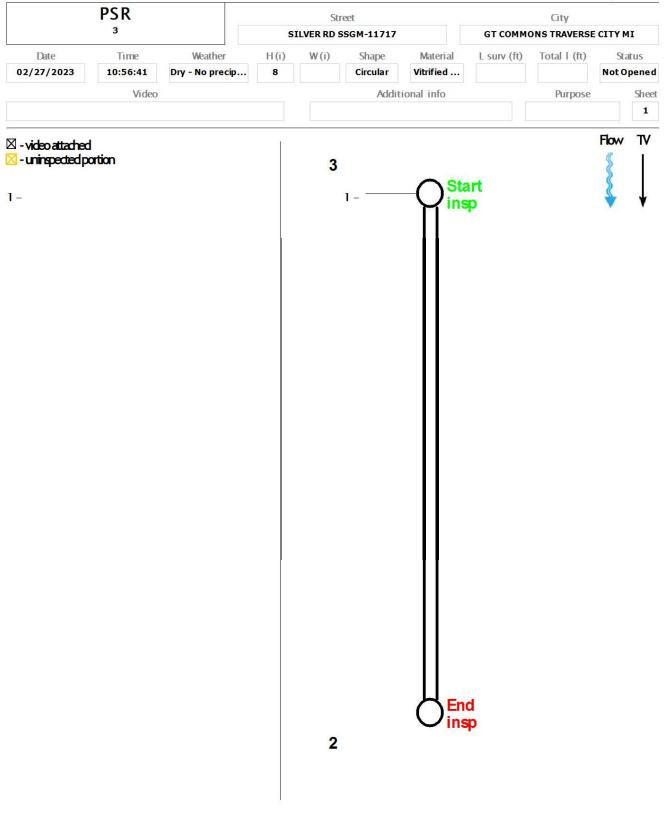
3 to 2 Downstream inspection

Customer Operator	City 5 TRAVERSE CITY MI	Owner
Customer Operator		
DAVE FERRIS	Certificate number U-1115-07001933	L surv (ft) Total I (ft)
Location code Location details H (i) W (i)	Shape Material Pre-clear Circular VCP N	ning Date cleaned Pipe use
Upstream MH UR to I (ft) UG to I (ft) UR to G (ft)	Circular VCP N Downstream MH D R to I (ft)	
Direction Flow control Drainage area Lining method Downstream Not Controlled	Pjl (ft) Year constr	Year renewed


	Structural										
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	0	0	0	0	0.0		0.0				

O&M												
Grade 1	Grade 2	Grade 3	rade3 Grade4 Grade5 Rating	Rating	Quick	Index						
0	0	0	0	0	0.0		0.0					

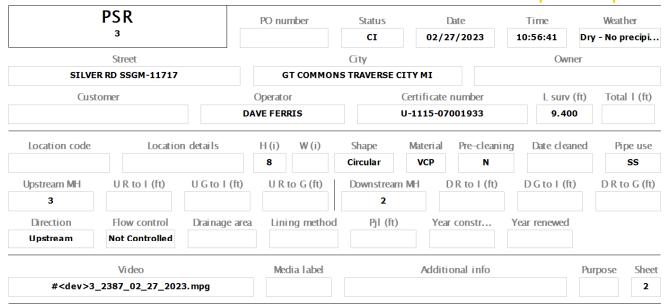
	Overall												
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	0	0	0	0.0		0.0						



AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

norsiv-on

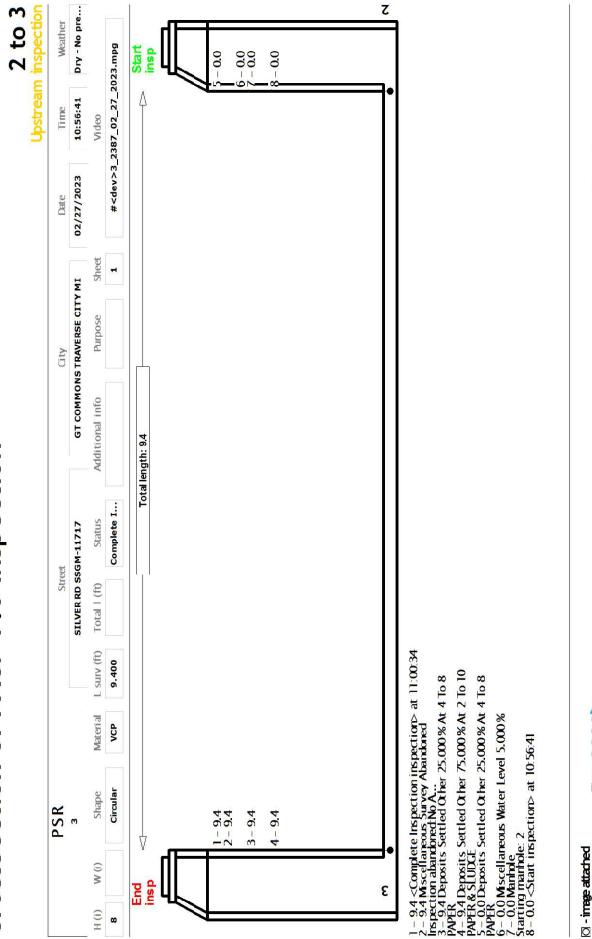
3 to 2 Downstream inspection


trio-vision

2 to 3 Upstream inspection

		D	<u> </u>										upsu e			
			SR ₃		PC) num	ber		itus		ate		Time	_	Weath	
			5							02/27	/2023	10):56:41	Dry	- No pr	ecipi
			Street					City					Owr	er		
			SSGM-11717					NS I KAV	ERSE CITY							
	Cu	stome	:r			erator				ificate r			L surv		Total	l (ft)
				D	AVE	FERRI	[S		0-11	115-070	01933		9.40	0		
Locat	ion code	2	Locatio	n details	Н	(i)	W (i)	Shap	oe Ma	teri al	Pre-clea	nina	Date clea	ned	Pip	e use
						3		Circu		VCP	N				_	SS
Unstre	am MH		UR to I (ft)	U G to I (ft)		U R to	o G (ft)	Dow	nstream MH	D	R to I (f	t)	DGtol(ft)	D R to	G (ft)
	3			0001(1)		U IN IO	0 (10)		2				00101 (11		DICIO	U (II)
	tion		Flow control	Drainage area		Linin	g method	4	Pjl (ft)	Voar	constr	Vor	r renewed			
	ream		ot Controlled	Didindye die	1		y method	, 	PJI (IL)	Teal	consu	Tea	I Telleweu			
			Video			Medi	a label			Additio	onal info			Purp	oose	Sheet
	# <dev></dev>	3_238	87_02_27_202	23. mpg												1
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M Jt		Rema	ks		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>												
0.0	AMH		Manhole									Startin	ıg manhole	£ 2		
0.0	MML		Miscellaneous	s Water Level					5.000							
0.0	DSZ	SO1	Deposits Sett	ed Other	4	8			25.000		4	PAPER				
9.4	DSZ		Deposits Sett	ed Other	2	10			75.000		5		& SLUDGE			
9.4	DSZ	F01	Deposits Sett		4	8			25.000		4	PAPER				
9.4	MSA		Miscellaneous	s Survey Aban									tion aband	lone		
												d:No/	ccess			
			<complete in<="" th=""><th>ispection></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></complete>	ispection>												
l																

2 to 3 Upstream inspection


	Structural											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index					
0	0	0	0	0	0.0	0000	0.0					

O&M												
Grade 1	Grade 2	Grade 3 Grade 4 Grade 5 Rating	Rating	Quick	Index							
0	0	0	8	5	13.0	<mark>514</mark> 2	4.3					

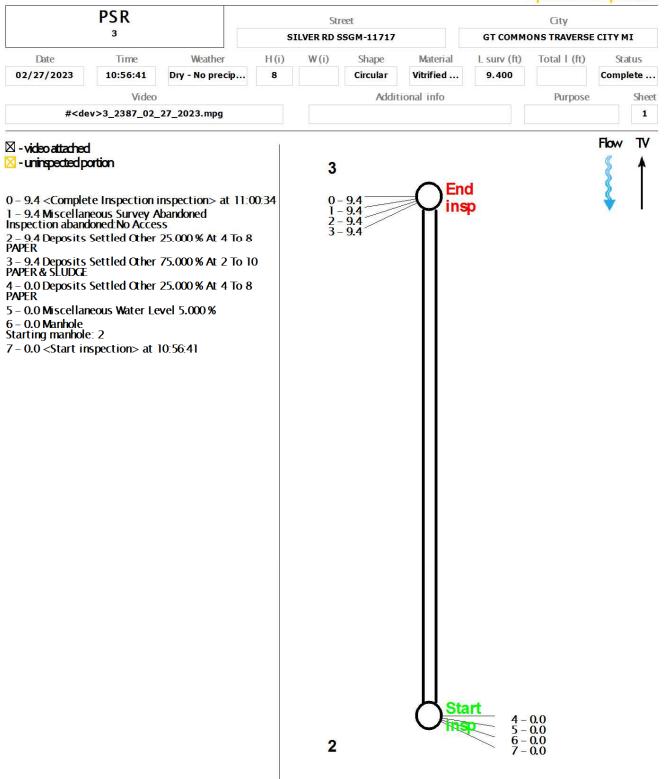
Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	0	8	5	13.0	5142	4.3						

CrossSection of PACP 7.0 inspection

Page 1 of 1 [03/06/2023 15:05:27]

Flow

2

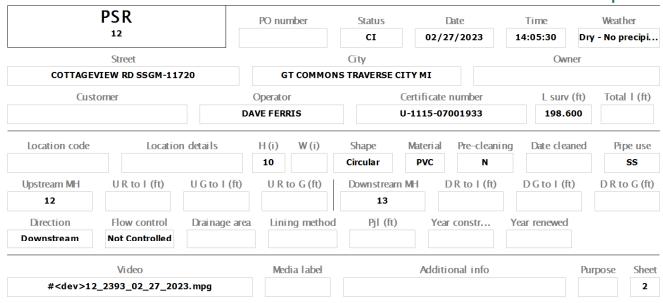

Ininspected portion

Noteo attached

AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

CORVERION

2 to 3 Upstream inspection

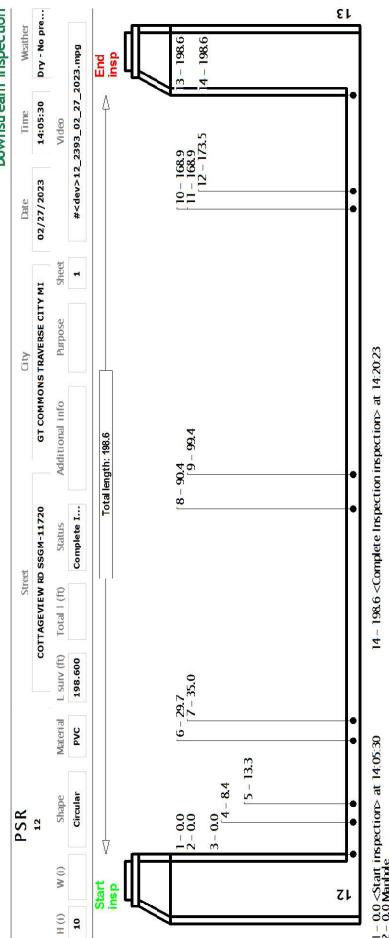


12 to 13 Downstream inspection

				1																	CUON
			SR			PO) nun	nber		Sta	atus		D	ate			Ti	me		Weath	ner
		1	12							C	I		02/2	7/202	3		14:0	05:30	Dr	y - No pi	recipi
		9	Street							City								С	Wner		
	COTTAG	EVIEV	W RD SSGM-11	720			GT	г <mark>сом</mark> мо	NS.	TRAV	ERSE CI	ТҮМ	I								
	Cu	stome	er		(Ope	rator				(Certifi	cate	numbe	er			L su	ırv (ft)	Tota	 (ft)
					DA	VEI	FERR	IS			ι	J-111	5-070	0193	3			198	8.600		
Locat	tion code		Locatio	n details		H ((i)	W (i)		Shap	De	Mate	eri al	Pre-o	lea	ning	, I	Date c	leaned	Pip	e use
						10	0			Circu	lar	PV	'C		N						SS
Upstre	am MH		UR to I (ft)	U G to I	(ft)	l	U R to	oG(ft)		Dowr	nstream	MH	D	R to I	l (ft)	D	G to I	(ft)	DRto	o G (ft)
	2										13										
Direc	ction		Flow control	Drainage	e area		Linir	ng metho	d		Pjl (ft)		Year	const	r		Year	renew	ed		
	stream		lot Controlled					9			- J- (/										
			Video				Medi	ia label				٨	dditid	onal ir	ofo				Pi	irpose	Sheet
-	# <dev></dev>	2_23	93_02_27_202	23. mpa			INCUI					74	aurut	/101 11	10				ru	nhose	1
		-																			
Dist (ft)	Code	CD	Obse	rvation		At		V1	١	/2	%		St	O&M	Jt			Re	marks		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>										-							
0.0	AMH		Manhole													Star	rting	manh	ole: 1		
																2					
0.0	MML		Miscellaneous	s Water Leve	1						20.0	00									
8.4	MMC		Miscellaneous	s Material C	ha											Mat	erial	chang	ges TO		
																VC	Р				
13.3	MSC		Miscellaneous		e			8.000													
29.7	JAM		Joint Angular										3								
35.0	JAM		Joint Angular										3								
90.4	FL		Fracture Long			4							3		Y						
99.4	RFJ		Roots Fine Jo				11							1	Y						
168.9	RFJ		Roots Fine Jo			8	10							1	Y						
168.9	RFJ		Roots Fine Joi			2	4							1	Y						
173.5 198.6	RFJ AMH		Roots Fine Joi Manhole	Int		8	4							1	Y	Fini	ichin	a ma	nhole		
1 90.0	/ WVII 1		Mannore													13	151111	yma	more.		
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>																	

12 to 13 Downstream inspection

	Structural													
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index													
0	0	9	0	0	9.0	3300	3.0							

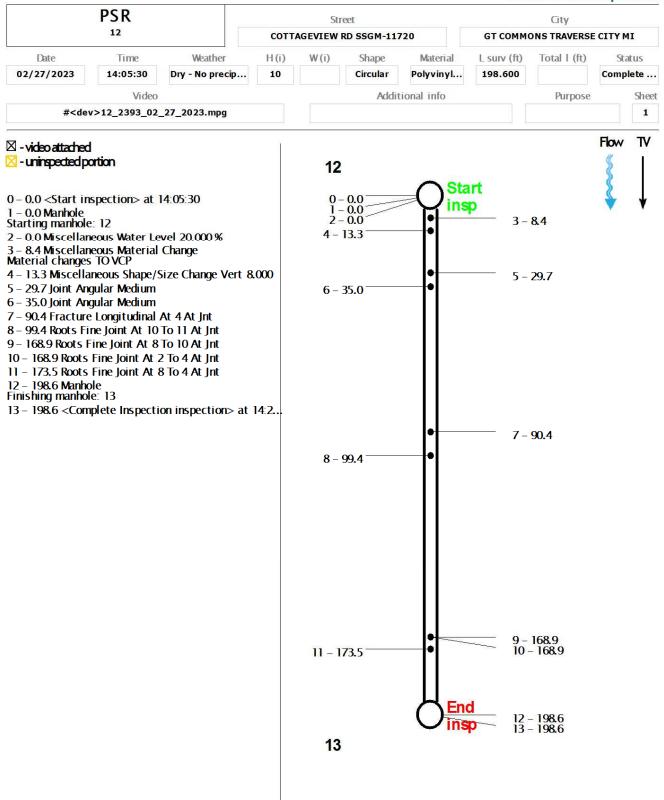

O&M													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
4	0	0	0	0	4.0	1400	1.0						

Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
4	0	9	0	0	13.0	3314	1.9						

Assetb46 Office (PACP+LACP 7.0) 10.1.54

www.trio-vision.com

Page 1 of 1 [03/06/2023 15:05:29]


Flow

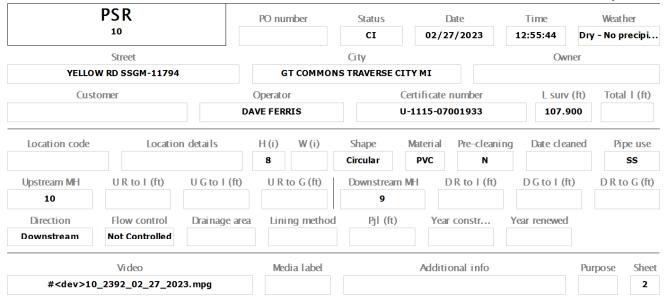
2

Ininspected portion

Noteo attached

12 to 13 Downstream inspection

AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

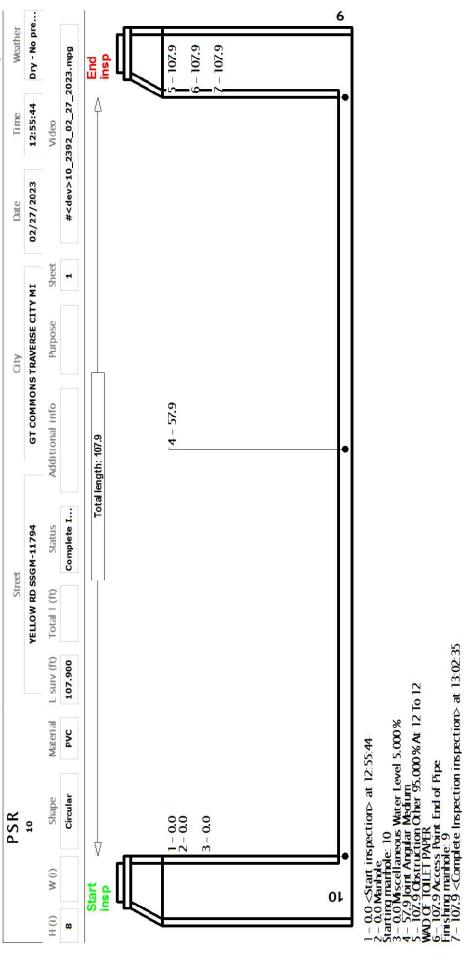

THO-VISION

10 to 9 Downstream inspection

Weather		ne	Tin			ate	D		tus	Sta	ber	num	PO		SR			
No precip	Dry ·	5:44	12:55	1	3	/2023	2/27	0	I						LO	1		
	er	Owne								City					Street	9		
								ТҮМІ	ERSE CI	IS TRAV	соммо	GT		ł	D SSGM-11794	OW RE	YELL	
Total I (f	ft)	L surv (1			r	number	cate r	ertific	C			rator	Ope		r	stome	Cu	
	0	107.90			3	01933	5- 07 0	-1115	U		5	ERR	AVE I	DA				
Pipe us	ed	ate clean	Da	ning		Pre-c		Mater		Shap	W (i)		H (on details	Locatio	:	ion code	Locat
SS					N		2	PVC	ar	Circu			8					
OR to G (to I (ft)	DG)	(ft	R to I	D	MH	stream	Dow	G (ft)	J R to	l	UG to I (ft)	UR to I (ft)		am MH	
									9								0	1
		enewed	ear re	Y		constr	Year		ÿl (ft)		method	Linin		Drai nage area	low control		tion	
															ot Controlled	N	tream	Downs
ose Sh	Purp				fo	onal in	ditic	٨٨			label	Medi			Video			
ose sn	ruip				IU	nidi III		Ad			Tabel	weul		23. mpa	92_02_27_20		t≤dev>1	
														p				
In	6	Remark			. It	O&M	9		%	V2	V1		At	ervation	Ohse	CD	Code	Dist (ft)
	-				•	Calif	-		/0		••		~		<start inspec<="" td=""><td>00</td><td>0000</td><td></td></start>	00	0000	
	1	nanhole:	ina n	Starti										uon	Manhole		AMH	0.0
	•			0														
								0	5.00					s Water Level	Miscellaneou		MML	0.0
							3							r Medium	Joint Angular		JAM	57.9
	VPER	OILET PA	OF T	WAD		5		00	95.0			12	12	Other	Obstruction (OBZ	107.9
	e:	manhol	hing	Finis										End of Pipe	Access Point		AEP	107.9
				9														
														ispection>	<complete ir<="" td=""><td></td><td></td><td></td></complete>			

10 to 9 Downstream inspection

	Structural														
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index														
0	0	3	0	0	3.0	3100	3.0								


			08	<u></u> Μ.			
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index
0	0	0	0	5	5.0	<mark>510</mark> 0	<mark>5.0</mark>

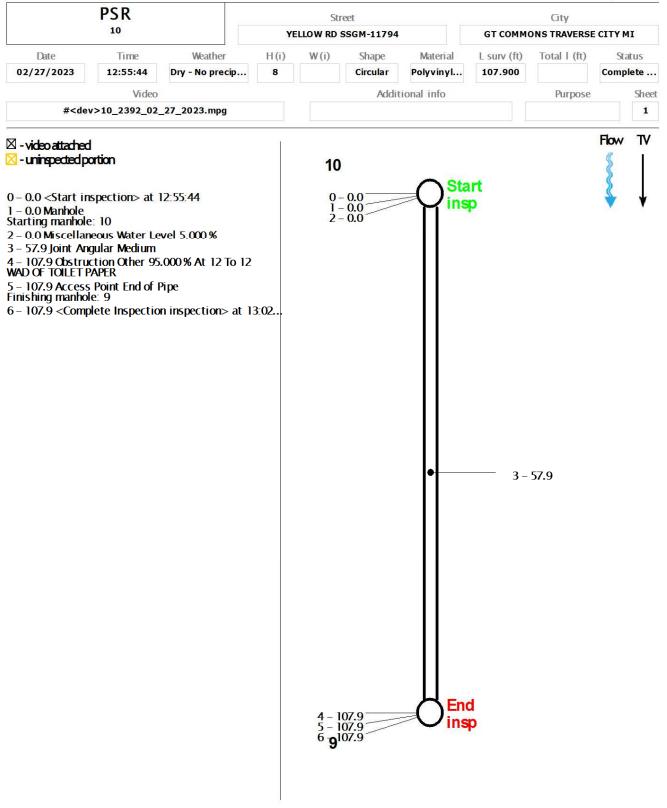
Overall													
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index						
0	0	3	0	5	8.0	5131	4.0						

CrossSection of PACP 7.0 inspection

10 to 9 Downstream inspection

 ○ - image attached
 Flow

 ⊠ - video attached
 Flow


 ⊠ - unispected portion
 TV

 Page 1 of 1 [03/06/2023 15:05:29]

AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

CORVERION

10 to 9 Downstream inspection

THO-VISION

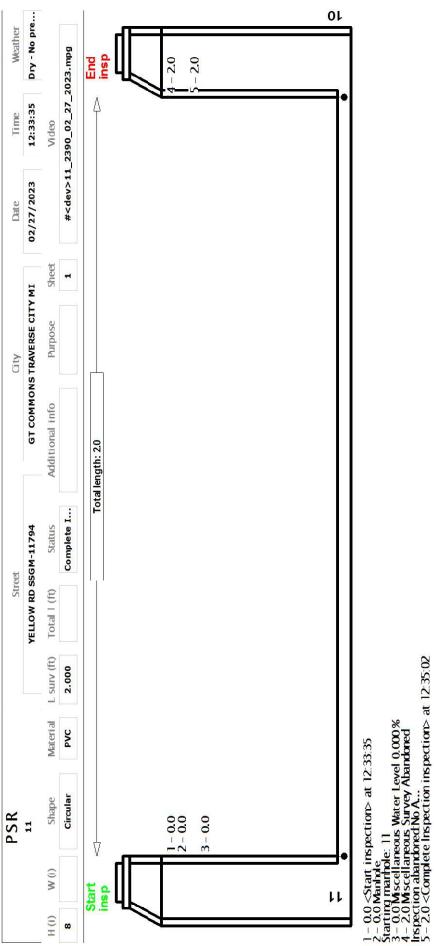
11 to 10 Downstream inspection

				I										bucc		ispe	
			SR		PC) nun	nber	Sta	itus		late		Tim			Weathe	
		1	11					(1	02/2	7/2023		12:33	:35	Dry -	- No pre	ecipi
		9	Street					City						Owne	r		
	YELL	OW RI	D SSGM-11794	ļ		GT	гсоммог	NS TRAV	ERSE CITY M	11							
	Cu	stome	er		Ope	erator			Certif	ficate	number			L surv (ft)	Total	l (ft)
				1	DAVE	FERR	IS		U-11:	15-07	001933			2.000			
Locat	ion code	•	Locatio	on details	Н	(i)	W (i)	Shap	e Mat	eri al	Pre-clo	eanir	ng Da	te clean	ed	Pipe	e use
					8	3		Circu	lar P	vc	r	N				S	S
Upstrea			UR to I (ft)	U G to I (ft)		U R to	o G (ft)	Dow	nstream MH		R to I ((ft)	DG	to I (ft)		D R to	G (ft)
1	1								10								
Direc			low control ot Controlled	Drainage are	a	Linin	ng method		Pjl (ft)	Year	constr.		Year re	newed			
			Video			Medi	ia label			dditi	onal info	0			Purp	inse	Sheet
#	# <dev>1</dev>	1_23	90_02_27_20	23. mpg		I COL											1
Dist (ft)	Code	CD	Obse	ervation	At		V1	V2	%	St	O&M	Jt		Remark	s		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>													
0.0	AMH		Manhole									St	arting m	anhole:	1		
												1					
0.0	MWL		Miscellaneous						0.000								
2.0	MSA		Miscellaneous	s Survey Aban	•								Ispection No Acce		one		
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>													

11 to 10 Downstream inspection

	PSR		PO number	Status	Date		Time	Weather
	11			CI	02/27/2	023	12:33:35	Dry - No precipi
	Street			City			Own	er
YELLO	W RD SSGM-11794		GT COMMON	S TRAVERSE CI	ТҮМІ			
Cus	tomer	(Operator	C	ertificate nur	nber	L surv	(ft) Total I (ft)
		DA	VE FERRIS	U	-1115-07001	933	2.00	D
Location code	Location	n details	H (i) W (i)	Shape	Material P	re-cleaning	Date clear	ned Pipe use
			8	Circular	PVC	N		SS
Upstream MH	UR to I (ft)	U G to I (ft)	U R to G (ft)	Downstream	MH DR	to I (ft)	DG to I (ft)) DR to G (ft)
11				10				
Direction	Flow control	Drainage area	Lining method	Pjl (ft)	Year co	nstr \	ear renewed	
Downstream	Not Controlled							
	Video		Media label		Additiona	l info		Purpose Sheet
# <dev>1</dev>	1_2390_02_27_202	23. mpg						2

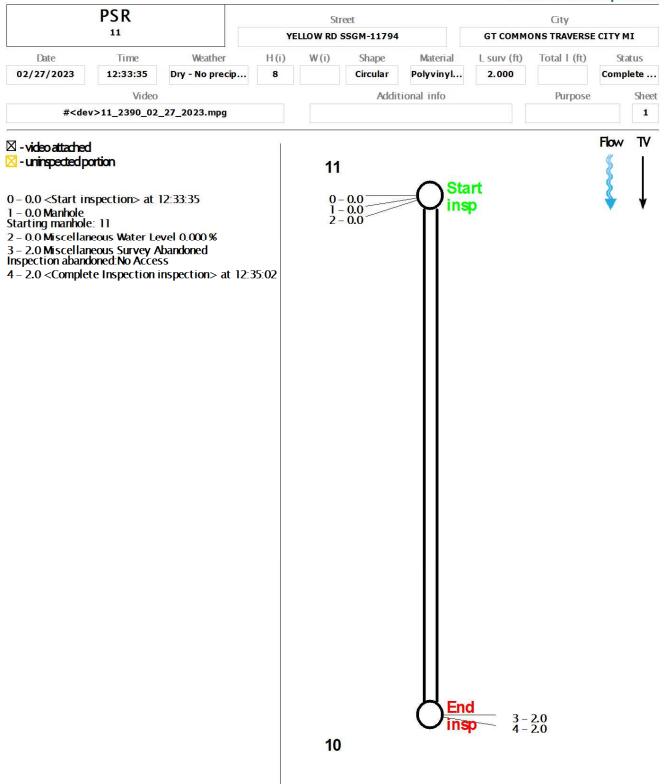
	Structural													
Grade 1	Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index													
0 0 0 0 0 0 0.0 0.0														


O&M										
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index			
0	0	0	0	0	0.0	0000	0.0			

Overall											
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index				
0	0	0	0	0	0.0	0000	0.0				

CrossSection of PACP 7.0 inspection

11 to 10 Downstream inspection



AssetDM5 Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

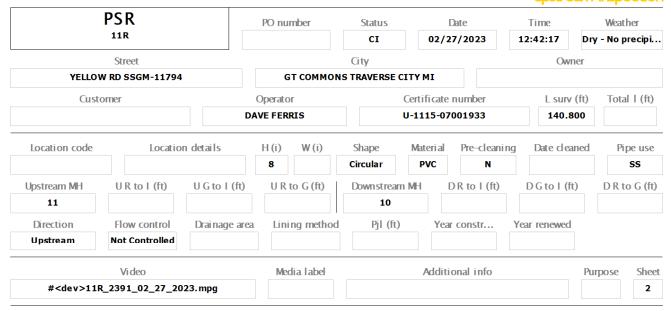
CORV-OIL

PlanView of PACP 7.0 inspection

11 to 10 Downstream inspection

AssetDMS Office (PACP+LACP 7.0) 10.1.54 www.trio-vision.com

TV with grading of PACP 7.0 inspection


10 to 11 Upstream inspection

													cpsue		II ISPC	
			SR	_	PC) numt	ber	Sta	tus		ate		Time		Weath	ier
		1	1R					C	1	02/2	7/2023		12:42:17	Dŋ	/ - No pr	ecipi
		9	Street					City					Ow	ner		
	YELL	OW RE	O SSGM-11794			GT	соммо	NS TRAV	ERSE CITY	МІ						
	Cu	stome	r		Ope	rator			Cert	ificate	number		L surv	(ft)	Total	l (ft)
					DAVE	FERRI	S		U-11	15-07	01933		140.	300		
Locat	tion code		Locatio	n details	H (W (i)	Shap Circu		teri al PVC	Pre-clea N		Date cle	aned		e use ss
	am MH		UR to I (ft)	U G to I (ft)		U R to	G (ft)	Dowr	nstream MH 10		R to I (f	t)	DGtol(t)	D R to	o G (ft)
				D :												
	ream		low control ot Controlled	Drainage ar	ea	Lining	g method		Pjl (ft)	Year	constr	Y	ear renewed			
			Video			Media	label			Additio	onal info			Pu	rpose	Sheet
#	¢ <dev>1</dev>	1R_23	391_02_27_20	23.mpg											1000	1
Dist (ft)	Code	CD	Obse	rvation	At		V1	V2	%	St	O&M Jt	:	Rema	arks		Img
			<start inspect<="" td=""><td>tion></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></start>	tion>												
0.0	AMH		Manhole									Start	ing manhol	e: 1		
												0				
0.0	MML		Miscellaneous	5 Water Level					5.000							
70.3	ΤF		Tap Factory		2		0.000									
104.4	TF		Tap Factory		2		0.000									
140.8	AEP		Access Point I	End of Pipe								Finis 11	shing manh	ole:		
			<complete in<="" td=""><td>spection></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></complete>	spection>												
			<complete in<="" th=""><th>spection></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></complete>	spection>												

TV with grading of PACP 7.0 inspection

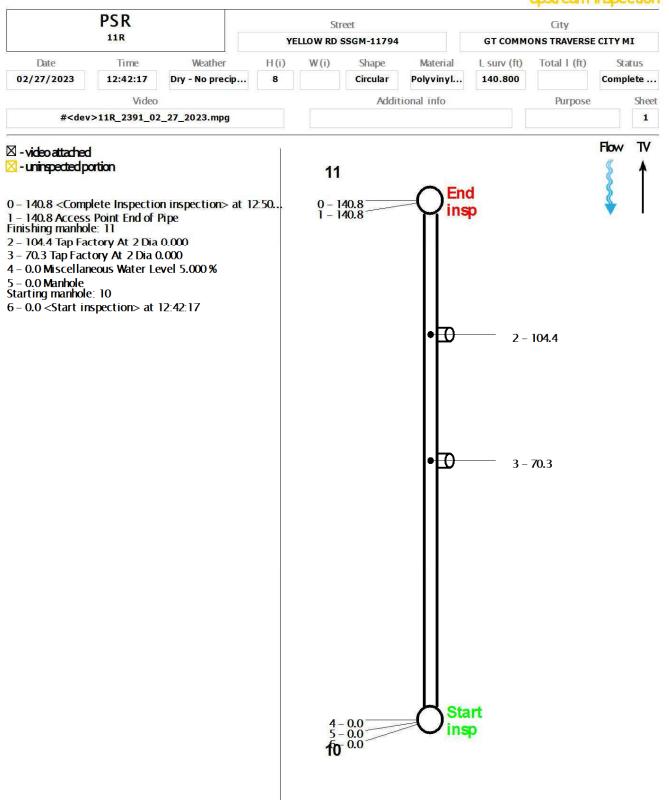
10 to 11 Upstream inspection


Structural									
Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index									
0	0	0	0	0	0.0	0000	0.0		

O&M									
Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Rating	Quick	Index		
0	0	0	0	0	0.0	0000	0.0		

Overall									
Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Rating Quick Index									
0	0	0	0	0	0.0	0000	0.0		

X - video attached
 Flow
 A - video attached
 N →
 Page 1 of 1 [03/06/2023 15:05:28]


image attached

NO-VISION

PlanView of PACP 7.0 inspection

10 to 11 Upstream inspection

Manhole ID	Install Date	Inspection Status	Overall Condition	Recommended Improvements
SSM-1612		Inspected	Fair	
SSM-1613		Inspected	Fair	
SSM-1614		Inspected	Fair	Reset/Adjust frame (Within Pavement) and Reseal
SSM-1615	7/1/2008	Inspected	Fair	
SSM-1616	7/1/2008	Inspected	Fair	
SSM-1617	7/1/2008	Inspected	Other	Clean Manhole
SSM-1618	7/1/2008	Inspected	Fair	
SSM-1619	7/1/2008	Inspected	Fair	
SSM-1620	7/1/2008	Inspected	Fair	
SSM-1621	7/1/2008	Inspected	Fair	
SSM-1657		Inspected	Fair	
SSM-1658	1/1/1968	Inspected	Poor	Reconstruct Manhole (Outside of pavement)
SSM-1659	1/1/1968	Inspected	Poor	Reconstruct Manhole (Outside of pavement)
SSM-1660	1/1/1968	Inspected	Poor	Reconstruct Manhole (Within Pavement)
SSM-1661	1/1/1968	Inspected	Other	Reconstruct Manhole (Outside of pavement)
SSM-1662		Inspected	Poor	Reconstruct Chimney (Within Pavement) and Clean Manhole
SSM-7274		Inspected	Fair	Clean Manhole
SSM-7275		Inspected	Fair	Clean Manhole
SSM-7276		Inspected	Fair	Clean Manhole
SSM-7316		Not Found		
SSM-7317		Inspected	Fair	
SSM-7318	8/10/1968	STMH	Fair	Reconstruct Chimney (Within Pavement), Reseal, and Clean Manhole
SSM-7319	8/10/1968	Inspected	Poor	Reset/Adjust frame (Outside of pavement)
SSM-7320	8/10/1968	Inspected	Poor	Reconstruct Chimney (Outside of Pavement)
SSM-7321		Not Found		
SSM-7322		Not Found		
SSM-7323		Not Found		
SSM-7324		Inspected	Fair	
SSM-7325		Inspected	Fair	
SSM-7326		Not Found		
SSM-7327		Not Found		
SSM-7328		Inspected	Fair	
SSM-7329		Inspected	Fair	

Appendix D-7 Sanitary Manhole Inspections and Improvement plan

SSM-7330		Inspected	Poor	Reconstruct Manhole (Within
		•	FUUI	Pavement)
SSM-7331		Not Found		
SSM-7332		Not Found		
SSM-7333		Not Found		
SSM-7334		Not Found		
SSM-7335		Not Found		
SSM-7336		Inspected	Fair	
SSM-7337	8/10/1968	Not Found		
SSM-7338	8/10/1968	Not Found		
SSM-7339		Not Found		
SSM-7340		Inspected	Other	
SSM-7341		Not Found		
SSM-7342		Inspected	Fair	Reconstruct Chimney (Within Pavement)
SSM-7343		Not Found		
SSM-7344		Inspected	Fair	
SSM-7345		Not Found		
SSM-7346		Inspected	Fair	
SSM-7347		Not Found		
SSM-7348		Not Found		
SSM-7349		Not Found		
SSM-7350		Not Found		
SSM-7351		Not Found		
SSM-7352		Not Found		
SSM-7353		Not Found		
SSM-7354		Not Found		
SSM-7355		Not Found		
SSM-7356		Inspected		
SSM-7357		Inspected	Fair	
SSM-7358		Not Found		
SSM-7359		Inspected	Fair	Reset/Adjust frame (Within Pavement)
SSM-7360		Not Found		
SSM-7361		Not Found		
SSM-7362		Not Found		
SSM-7363		Not Found		
SSM-7364		Not Found		
SSM-7365		Not Found		
SSM-7366		Not Found		
SSM-7367		Inspected	Fair	
SSM-7368	8/10/1968	Inspected	Poor	Replace (Outside of Pavement)
SSM-7369	5, 10, 1500	Inspected		
SSMG-1001		Not Found		
SSMG-1001		Not Found		
SSMG-1002		Not Found		
SSMG-1003		Not Found		
331010-1004		Notiouliu		<u> </u>

SSMG-1005	Inspected	Fair	
			Reconstruct Manhole (Within
SSMG-1006	Inspected	Fair	Pavement)
SSMG-1007	Inspected	Fair	
			Reconstruct Chimney (Outside of
SSMG-1008	Inspected	Fair	Pavement
SSMG-1009	Inspected		
SSMG-1010	Inspected	Fair	Clean Manhole
SSMG-1011	Inspected	Fair	
SSMG-1012	No Access		
SSMG-1013	Inspected	Fair	
SSMG-1014	Inspected	Fair	
SSMG-1015	No Access		
SSMG-1016	Inspected	Fair	
SSMG-1017	Inspected	Fair	
SSMG-1018	Inspected		
SSMG-1019	Inspected	Fair	
SSMG-1020	Inspected	Fair	
SSMG-1021	Inspected	Poor	Mortar Seal Joints and Reseal Manhole
SSMG-1022	Inspected	Fair	
SSMG-1023	Buried		
SSMG-1024	Buried		
SSMG-1025	Inspected	Fair	
SSMG-1026	Buried		
SSMG-1027	Inspected	Fair	
SSMG-1028	Inspected	Fair	
SSMG-1029	Not Found		
SSMG-1030	Inspected	Poor	Clean Manhole
SSMG-1031	Inspected	New	
			Reconstruct Chimney (Within
SSMG-1032	Inspected	Fair	Pavement)
SSMG-1033	Inspected	Poor	Clean Manhole
SSMG-1034	Inspected	Poor	Reconstruct Chimney (Within
			Pavement) and Clean Manhole
SSMG-1035	Inspected	Fair	
SSMG-1036	Inspected	Poor	Mortar Seal Joints
SSMG-1037	Inspected	Fair	
SSMG-1038	Inspected	Fair	
SSMG-1039	Inspected	Fair	
SSMG-1040	Inspected	Poor	Clean Manhole
SSMG-1041	Inspected	Fair	
SSMG-1042	Inspected	Fair	
SSMG-1043	Inspected	Fair	Clean Manhole
SSMG-1044	Inspected	Other	
SSMG-1045	Inspected	Fair	

Appendix D-8 Sanitary Pipe Inspections and Improvement plan

Pipe ID	Install Date	Material	Diameter	ссти	Recommended Improvements
SSGM-10334	1/1/1995	Poly Vinyl Chloride	8		
SSGM-10335	1/1/1995	Poly Vinyl Chloride	8		
SSGM-10336	1/1/1995	Poly Vinyl Chloride	8		
SSGM-10716		Vitrified Pipe	8	Yes	Verify
SSGM-10717		Vitrified Pipe	8		
SSGM-10718		Vitrified Pipe	8	Yes	Verify
SSGM-10719	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10721	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10722	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10724	, ,	Vitrified Pipe	6		
SSGM-10725	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10726	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10727	7/1/2008	Poly Vinyl Chloride	8	Yes	None Required
SSGM-10728	7/1/2008	Poly Vinyl Chloride	8		
SSGM-10729	7/1/2008	Poly Vinyl Chloride	8		
SSGM-11663		Poly Vinyl Chloride	10		
SSGM-11664		Vitrified Pipe	6		
SSGM-8233		Vitrified Pipe	10		
SSGM-8234	1/1/1968	Clay	12	Yes	Verify
SSGM-8235	1/1/1968	Clay	12		
SSGM-8236	1/1/1968	Clay	12	Yes	Line/Replace First 174' of Sewer
SSGM-8237	1/1/1968	Clay	12		
SSGM-8238	1/1/1968	Clay	12	Yes	Line Sewer
SSGMG-1001		Poly Vinyl Chloride			
SSGMG-1002		Poly Vinyl Chloride			
SSGMG-1003	4/16/2010	Poly Vinyl Chloride	8		
SSGMG-1004		Vitrified Clay Pipe	10		
SSGMG-1005		Vitrified Clay Pipe	10		
SSGMG-1006		Vitrified Clay Pipe	8	Yes	Verify
SSGMG-1007		Vitrified Clay Pipe	6		
SSGMG-1008		Vitrified Clay Pipe	8		
SSGMG-1009		Vitrified Clay Pipe	8		
SSGMG-1010					
SSGMG-1011			6		
SSGMG-1012			6		
SSGMG-1013			6		
SSGMG-1014		Vitrified Clay Pipe	4	Yes	Verify
SSGMG-1015				Vee	
SSGMG-1016			6	Yes	Verify
SSGMG-1017		Poly Vinyl Chloride	6		

SSGMG-1018			4		
SSGMG-11665	8/10/1968	Vitrified Clay Pipe	10		
SSGMG-11668	8/10/1968	Vitrified Clay Pipe	8		
SSGMG-11669	0, 10, 1000	the first only inpe	8		
SSGMG-11670			8		
SSGMG-11671			4		
SSGMG-11672		Poly Vinyl Chloride	10	Yes	Remove roots
SSGMG-11673		r ory vinyr emonae	8	103	
SSGMG-11674			10		
SSGMG-11675			10		
SSGMG-11676			10		
SSGMG-11677		Vitrified Clay Pipe	10		
SSGMG-11678		Vitrified Clay Pipe	10		
SSGMG-11078		Vitrified Clay Pipe	8	Yes	Clean Sewer
SSGMG-11675		Vitrified Clay Pipe	10	Yes	Replace Sewer
SSGMG-11080		vitilieu ciay ripe	8	165	
SSGMG-11681			8		
SSGMG-11683	8/10/1968	Vitrified Clay Pipe	8		
SSGMG-11684	6/10/1908	Vitilieu Ciay Pipe	10		
SSGMG-11685	8/10/1968	Vitrified Clay Pipe	6		
SSGMG-11685	8/10/1968	vitilieu Clay Pipe	6		
SSGMG-11687	8/10/1908		8		
SSGMG-11687			6		
SSGMG-11689			6		
SSGMG-11689			6		
SSGMG-11690 SSGMG-11691	4/16/2010		10		
SSGMG-11691	4/10/2010		6		
SSGMG-11692 SSGMG-11693			6		
SSGMG-11693			6		
SSGMG-11694			6		
SSGMG-11695			6		
			12		
SSGMG-11698			12		
SSGMG-11699 SSGMG-11700			12		
SSGMG-11700 SSGMG-11701					
SSGMG-11701			6 6		
SSGMG-11702 SSGMG-11703			6		
			1		
SSGMG-11704 SSGMG-11706			6 8		
		Vitrified Clay Disc			
SSGMG-11707 SSGMG-11708		Vitrified Clay Pipe	10 °		
			8		
SSGMG-11709			8		
SSGMG-11710			8		
SSGMG-11711			8		
SSGMG-11712			6		
SSGMG-11713			6		

SSGMG-11714			6		
SSGMG-11714		Vitrified Clay Pipe	8		
SSGMG-11716		Vitrified Clay Pipe	6		
SSGMG-11717	8/10/1968	Vitrified Clay Pipe	8	Yes	Clean Sewer
SSGMG-11718	8/10/1508	Vitrified Clay Pipe	6	163	
SSGMG-11718		Vitilieu Ciay Fipe	10		
SSGMG-11720			6		
SSGMG-11721		Vitrified Clay Pipe	6		
SSGMG-11722		Vitilieu Ciay Pipe	0		
SSGMG-11723 SSGMG-11724					
SSGMG-11725					
SSGMG-11726					
SSGMG-11727					
SSGMG-11728					
SSGMG-11729					
SSGMG-11730					
SSGMG-11731					
SSGMG-11732					
SSGMG-11733					
SSGMG-11734					
SSGMG-11735					
SSGMG-11736					
SSGMG-11737					
SSGMG-11738		Poly Vinyl Chloride	6		
SSGMG-11739		Poly Vinyl Chloride	6		
SSGMG-11740		Poly Vinyl Chloride	6		
SSGMG-11741		Poly Vinyl Chloride	6		
SSGMG-11742		Vitrified Clay Pipe	8		
SSGMG-11743		Poly Vinyl Chloride	8		
SSGMG-11744		Vitrified Clay Pipe	12		
SSGMG-11745		Poly Vinyl Chloride	8		
SSGMG-11746		Reinforced Plastic			
		Pipe (Truss Pipe)	8		
SSGMG-11747		Vitrified Clay Pipe	8		
SSGMG-11748		Vitrified Clay Pipe	8		
SSGMG-11749		Vitrified Clay Pipe	8		
SSGMG-11750		Vitrified Clay Pipe	8		
SSGMG-11751		Vitrified Clay Pipe	8		
SSGMG-11752		Vitrified Clay Pipe	6		
SSGMG-11753		Poly Vinyl Chloride	12	Yes	Line Sewer
SSGMG-11754		Vitrified Clay Pipe	4		
SSGMG-11756		Vitrified Clay Pipe	6		
SSGMG-11757		Poly Vinyl Chloride	6		
SSGMG-11761		Poly Vinyl Chloride	8		
SSGMG-11762		Poly Vinyl Chloride	6		
SSGMG-11763		Poly Vinyl Chloride	6		

SSGMG-11764	Poly Vinyl Chloride	6		
SSGMG-11765	Vitrified Clay Pipe	10		
SSGMG-11766	Poly Vinyl Chloride	6		
SSGMG-11768	Poly Vinyl Chloride	6		
SSGMG-11769	Poly Vinyl Chloride	6		
SSGMG-11770	Poly Vinyl Chloride	6		
SSGMG-11771	Poly Vinyl Chloride	6		
SSGMG-11772	Poly Vinyl Chloride	6		
SSGMG-11773	Poly Vinyl Chloride	6		
SSGMG-11774	Poly Vinyl Chloride	6		
SSGMG-11775	Poly Vinyl Chloride	8		
SSGMG-11776	Poly Vinyl Chloride	6		
SSGMG-11777	Poly Vinyl Chloride	6		
SSGMG-11778	Vitrified Clay Pipe	6		
SSGMG-11779	Vitrified Clay Pipe	6		
SSGMG-11780	Vitrified Clay Pipe	6		
SSGMG-11781	Vitrified Clay Pipe	8		
SSGMG-11782	Poly Vinyl Chloride	8	Yes	Clean Sewer
SSGMG-11783	Poly Vinyl Chloride	6		
SSGMG-11784	Poly Vinyl Chloride	8	Yes	None Required
SSGMG-11785	Poly Vinyl Chloride	8		
SSGMG-11786	Poly Vinyl Chloride	6		
SSGMG-11787	Poly Vinyl Chloride	6		
SSGMG-11789	Vitrified Clay Pipe	10		
SSGMG-11790	Poly Vinyl Chloride	6		
SSGMG-11792	Reinforced Plastic			
3201010-11/92	Pipe (Truss Pipe)	8		

Appendix E — Road Sidewalk and Parking Areas

Appendix E-1 Rating Systems

Asphalt PASER

Denotes Priority Distress

	Asphalt 10	Asphalt 9	Asphalt 8
Good	New construction (< 1 year old) No defects <u>Recent base improvement</u> Possible Action: Proactive Preventative Maintenance (PPM)	Like new condition (> 1 year old) No defects <u>Recent overlay with or without</u> <u>a crush and shape</u> Possible Action: PPM	 ◆ Transverse cracks: > 40' apart Cracks: tight (hairline) or sealed Longitudinal cracks: few, on joints <u>Recent seal coat or slurry seal (*see below)</u> <i>Possible Action:</i> Crack seal or PPM
	Asphalt 7	Asphalt 6	Asphalt 5
Fair	 ◆ Transverse cracks: 10'-40' apart Cracks: open < ¼'' Crack erosion: none or little Surface raveling: none or little Patches: none or few in excellent condition <u>First signs of wear</u> Possible Action: Maintain with crack seal, fog seal 	 Transverse cracks: < 10' apart Block cracking: 6'-10' Blocks (large, stable) Cracks open ¼" - ½" Surface raveling: slight Patches: few in good condition Polishing or flushing: slight, moderate Sound structural condition Possible Action: Maintain with sealcoat 	 Block cracking: 1' – 5' blocks Longitudinal cracks: first signs, at edge Secondary cracks: first signs Cracks open > ½" Surface raveling: moderate Patching or wedging: good condition Polishing & flushing: extensive, severe Sound structural condition Possible Action: Maintain with sealcoat or thin overlay
	Asphalt 4	Asphalt 3	Asphalt 2
Poor	 Block cracking: < 1' blocks Wheel-path cracking (longitudinal) Rutting: ¹/₂" - 1" deep Transverse cracks: slight erosion Longitudinal cracks: slight erosion Surface raveling: severe Patches: fair condition First signs of structural weakening Possible Action: Structural overlay > 2" Underseal 	 Block cracking: severe (like alligator) Alligator cracking: initial, < 25% Rutting: 1"- 2" deep Transverse cracks: extensive erosion Longitudinal cracks: extensive erosion Patches: fair/poor condition Potholes: occasional Possible Action: Structural overlay > 2" Patching & repair prior to an overlay Milling to extend overlay life 	 Alligator cracks: > 25% Rutting or distortion: > 2" Cracks: closely spaced, with erosion Patches: extensive, in poor condition Potholes: frequent Possible Action: Reconstruction with base repair Crush and shape Asphalt 1 Like PASER 2 but with visible base and: Surface distress: severe with loss of integrity Possible Action: Reconstruction with base repair

General Rating Tips

Rate surface distress, not ride quality. Be aware of cracks in the wheel path; they can be hard to see and do not affect the ride.

Disregard the shoulder. Rate only the driveable pavement, edge line to edge line.

Do not ignore reflective cracks. Rate by assessing the type of crack (e.g. transverse, longitudinal, alligator).

Rate the current surface condition. If construction is in progress (i.e., work is active) but you are driving on the old surface, rate the new surface. Some barrels by the roadside is *not* construction in progress.

Rate the lane with the worst condition when lanes have differing conditions. For variable surface types, rate the worst lane and select it as the *Surface Subtype*.

Rate what you see, not what distresses you think might happen in the future.

Rate roads with the same scrutiny regardless of their use, ownership, or functional class.

Rutting often has visual cues like plow scars. Get out and measure using a straight edge and tape measure. Use caution! Rutting measurement changes are detailed in the *TAMC Data Collection Training Manual*'s "Michigan-specific Asphalt Road Rating Guide" section, page 7.

Composite Pavement consists of a concrete pavement overlaid with asphalt; rate it based on the uppermost surface (e.g. asphalt); and note the *Surface Subtype* as composite. A repaired concrete pavement's highest rating is a 9. While it may have had concrete joint repairs, no other defects can be present and the condition is "like new". Note, this is *not* likely to occur.

Sealcoat pavements are sealcoat over gravel whereas sealcoat treatment is sealcoat applied over asphalt. See pages 6-7 of the TAMC Data Collection Manual for rating sealcoat pavements. *With proactive sealcoat treatments, do not downgrade an asphalt PASER 9 or 10 (no defects) to an asphalt PASER 8 because of the treatment. Rate it based on the distresses that are visible (see *TAMC Data Collection Training Manual*'s "Proactive Sealcoat Treatments on Asphalt PASER 9" section, page 8).

Concrete PASER

Denotes Priority Distress

	Concrete 10	Concrete 9	Concrete 8
Good	New construction (< 1 year old) No defects <u>Recent reconstruction</u> <i>Possible Action:</i> <i>None</i>	 Like new (> 1 year old) ◆ Joint rehabilitation: recent, only if no other defects are present Map cracks: slight Pop outs: few Surface wear: light, in wheel path <u>Recent concrete overlay</u> <i>Possible Action:</i> None 	 Joint sealant: partial loss Joints: good condition Transverse cracks: none Meander cracks: isolated, well-sealed/tight Cracks: at manholes – isolated, well-sealed/tight Map cracks: minor Scaling: slight (first signs) Pop outs: minor Surface wear: light Possible Action: Little to no maintenance
Concrete 7 Co		Concrete 6	Concrete 5
Fair	 ◆ Full-depth repairs: excellent condition ◆ Transverse cracks: isolated Joints: some open Cracks: at manholes – some Settlement/heaves: isolated Scaling: minor Pop outs: could be extensive but sound Possible Action: Seal open joints Spot repair surface defects 	 Transverse joints: open ¼" Longitudinal joints: open ¼" Transverse & meander cracks: open ¼" Transverse & meander cracks: open ¼" Cracks: at corners – several, well-sealed/tight Shallow reinforcement: cracking – first signs Scaling: < 25% surface Possible Action: Seal open joints and cracks Overlay surface scaling areas 	 Joint/crack spalling: first signs Joint/crack faulting: up to ¼" Cracks: at corners – multiple, with broken pieces Shallow reinforcement: spalling Scaling: 25% to 50% surface Polishing: 25% to 50% surface <i>Possible Action:</i> Some partial depth joint repairs or patching may be needed
Concrete 4		Concrete 3	Concrete 2
Poor	 Joint/crack spalling: open 1" on several slabs Joint/crack faulting: up to ½" Transverse or meander cracks: multiple Cracks: at corners – missing pieces or patches Pavement blowups Spalling: > 50% surface Map cracks: > 50 % surface Scaling: > 50% surface Polishing: > 50% surface Possible Action: Some full depth repairs Asphalt overlay or extensive 	 Joint, transverse, and meander cracks: open 1" on most slabs severely spalled Joint/crack faulting: up to 1" D-cracking: evident Patches: extensive, fair to poor condition <i>Possible Action:</i> <i>Extensive full depth repairs</i> <i>Some full slab replacements</i> 	Joints: failed Settlement/heaves: extensive, severe Spalling (of slab cracks): extensive, severe Patches: extensive, failed condition <i>Possible Action:</i> <i>Recycle or rebuild pavement</i> Concrete 1 Pavement integrity: total loss Potholes: extensive <u>Restricted speeds</u> <i>Possible Action:</i> <i>Total reconstruction</i>
	surface texturing of surface scaling		

- Structural distresses require full depth repairs

Contact Information

- Small treatment attempt = 2

PASER Data Submission via the CSS IRT Website https://milogintp.michigan.gov

- Full depth repair treatment drops to 4

ormation - No

- No treatment attempt = 1 Framework Issues:

Roadsoft & LDC Technical Support: 906-487-2102

TAMC Coordinator: Roger Belknap, 517-230-8192 belknapr@michigan.gov

TAMC Website: michigan.gov/tamc

Michigan Transportation Asset Management Council

©2022 Center for Technology & Training Prepared by Center for Technology & Training—Michigan Technological University on behalf of the Michigan Transportation Asset Management Council

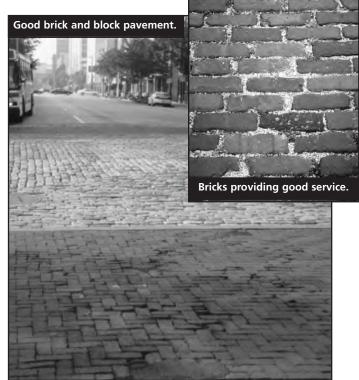
517-335-3741, ask for the TAMC Help Desk

Rating surface conditions of brick and block streets

The extent and severity of each type of defect are used to rate the street section's overall condition. Defects may gradually worsen with age or they may deteriorate rapidly, depending on the volume of heavy traffic and the road quality.

Inspecting and rating streets every year or two helps track the rate of deterioration and lets local officials plan for maintenance and improvement. The photographic examples will help you become familiar with the general patterns of each rating.

Surface rating	General condition, defects, and recommended improvement
4 Very Good	New condition. No defects.
3 Good	Very few defects. Good ride.
2 Fair	One or more types of defects present extending over 5% to 25% of the surface area. Ride may be uneven and rough. Sunken or settled areas. Broken bricks or blocks. Areas of poor drainage. Open joints. Spot repairs are recommended.
1 Poor	Defects cover more than 25% of the surface area. Very rough ride. Numerous patches in fair to poor condition. Poor drainage. Requires extensive repair or reconstruction.



New condition. No defects.

3 - GOOD

Few defects. Good ride.

2 – FAIR

One or more types of defects extending over 5 to 25% of the surface area.

Overall ride may be uneven and rough.

Sunken or settled areas.

Broken bricks or blocks.

Areas of poor drainage.

Open joints.

Spot repairs are recommended.

Twenty percent of surface needs improvement due to bad patches and rough ride.

Defects cover more than 25% of the surface area.

Very rough ride.

Numerous patches in fair to poor condition.

Poor drainage.

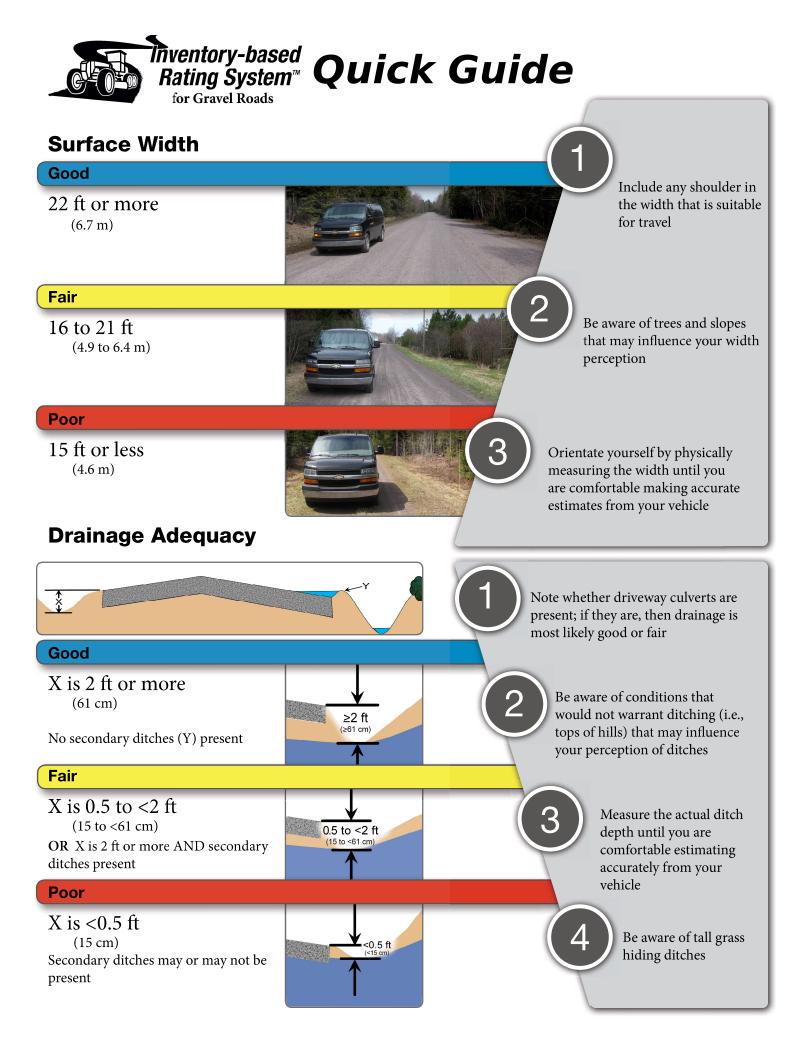
Requires extensive repair or reconstruction.

Summary

Assessing street conditions is essential to good planning and efficient use of local street funds. The PASER pavement surface evaluation and rating procedure, described here and in other PASER Manuals, has proven effective in improving decision making and using street repair and improvement funds efficiently. For more information and training contact the Transportation Information Center.

Produced by the T.I.C. with support from the Federal Highway Administration, the Wisconsin Department of Transportation, and the University of Wisconsin-Extension. The T.I.C., part of the nationwide Local Technical Assistance Program (LTAP), is a Center of the College of Engineering, Department of Engineering Professional Development, University of Wisconsin–Madison.

Copyright © 2001, reprint 2013


Wisconsin Transportation Information Center 432 North Lake Street Madison, WI 53706 800/442-4615 TEL 608/263-3160 FAX tic@epd.engr.wisc.edu http://tic.engr.wisc.edu/ Donald Walker Former T.I.C. Director *author*

Lynn Entine Entine&Associates editor Susan Kummer

Artifax designer

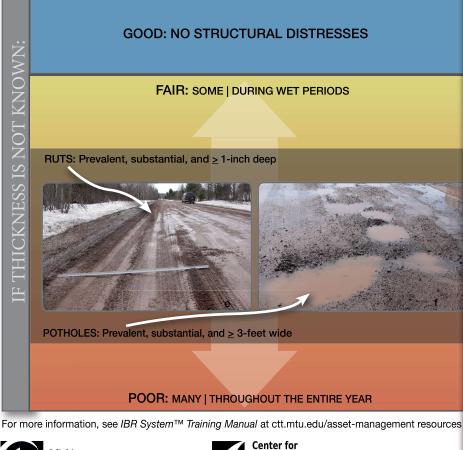
UW–Madison provides equal opportunities in employment and programming, including Title IX requirements.

Structural Adequacy

>7 in of good gravel (18 cm)

Fair

Poor


4-7 in of good gravel (10 to 18 cm)

>7 in (18 cm) gravel

<4 in of good gravel

Rating Lookup Chart

Look into what is causing structural problems; more gravel is not a remedy for bad cross-slope drainage

If you do not know the segment's history, ask someone who does; otherwise, rate during thaw, wet, and/or dry periods to determine when the road is impassable and when ruts and potholes are present.

		,				
Width	Drain	Struc	IBR #			
Good	Good	Good	10*			
Good	Good	Good	9			
Good	Good	Fair	8			
Good	Good	Poor	7			
Good	Fair	Good	9			
Good	Fair	Fair	8			
Good	Fair	Poor	6			
Good	Poor	Good	7			
Good	Poor	Fair	6			
Good	Poor	Poor	5			
Fair	Good	Good	8			
Fair	Good	Fair	7			
Fair	Good	Poor	6			
Fair	Fair	Good	7			
Fair	Fair	Fair	6			
Fair	Fair	Poor	5			
Fair	Poor	Good	6			
Fair	Poor	Fair	5			
Fair	Poor	Poor	4			
Poor	Good	Good	5			
Poor	Good	Fair	4			
Poor	Good	Poor	3			
Poor	Fair	Good	4			
Poor	Fair	Fair	3			
Poor	Fair	Poor	2			
Poor	Poor	Good	3			
Poor	Poor	Fair	2			
Poor	Poor	Poor	1			
*Segment is < 1 year old						

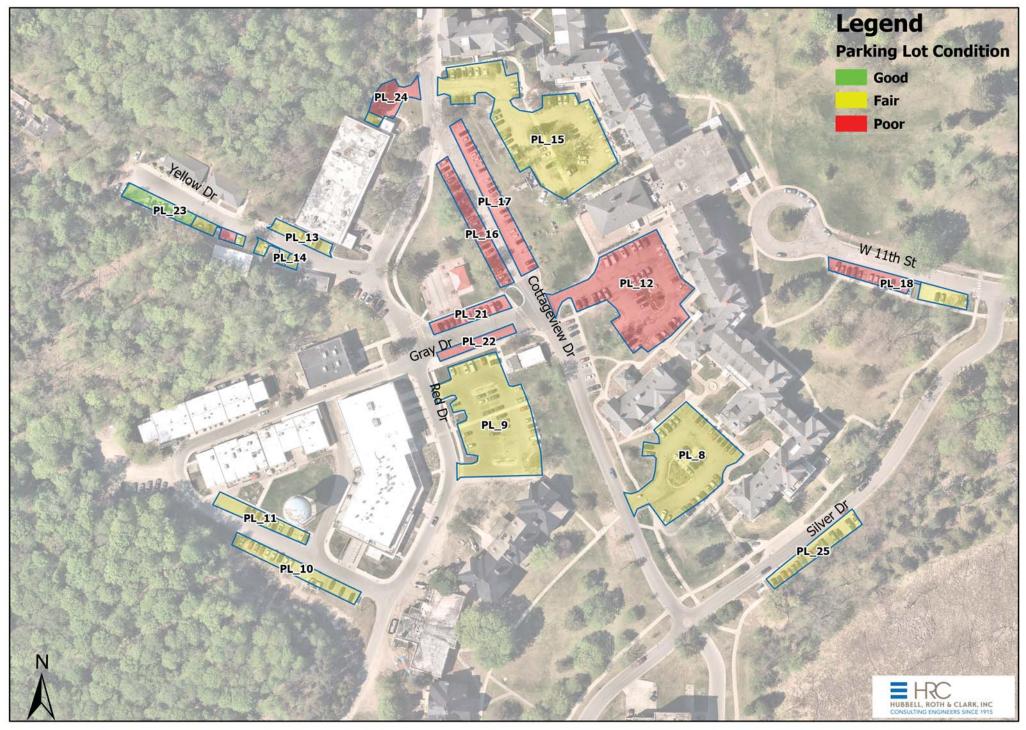


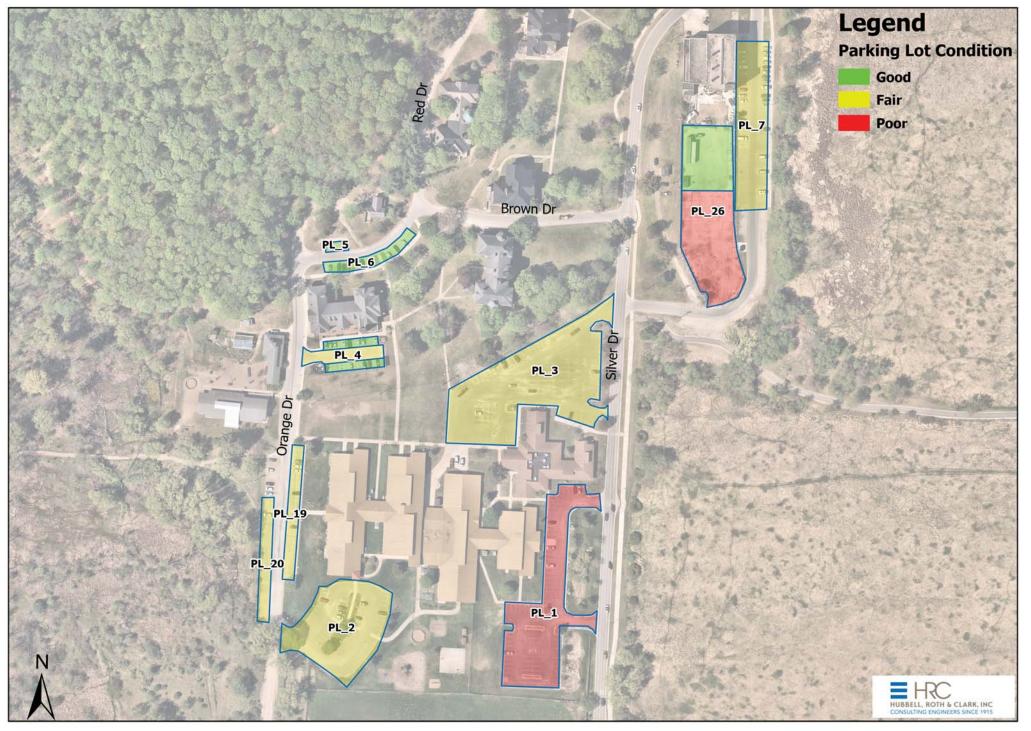
Michigan Transportation Asset Management Council

Technology & Training ctt@mtu.edu • ctt.mtu.edu • (906) 487-2102

Appendix E-2 Road PASER Rating

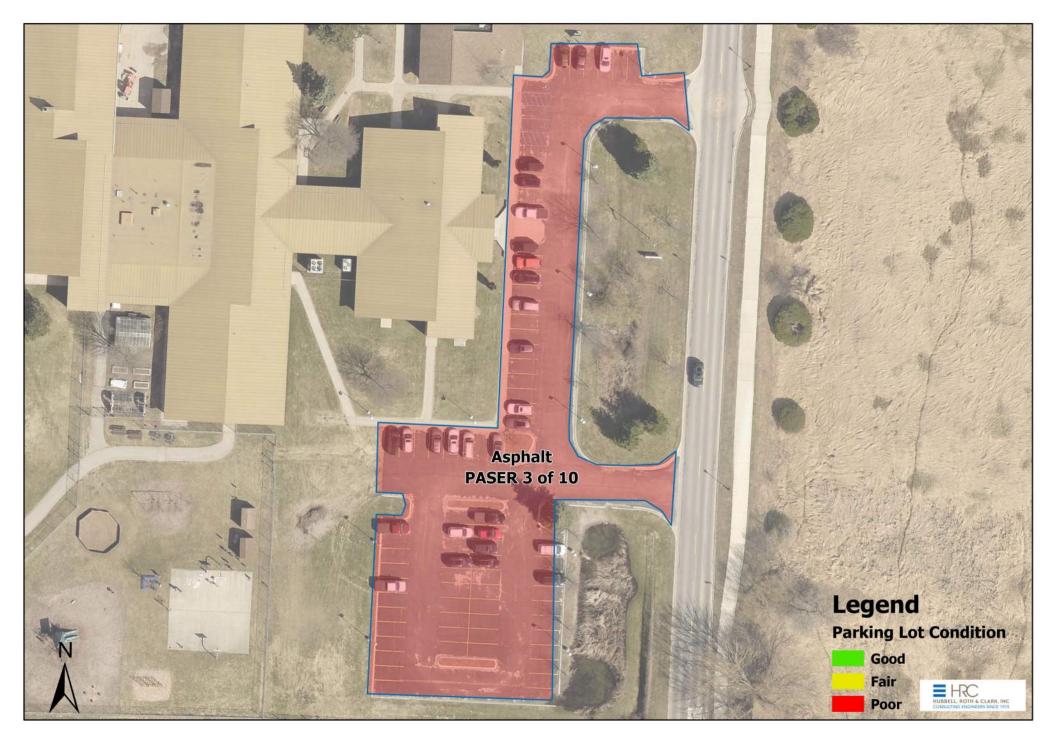
Grand Traverse Commons 2022 PASER Rating

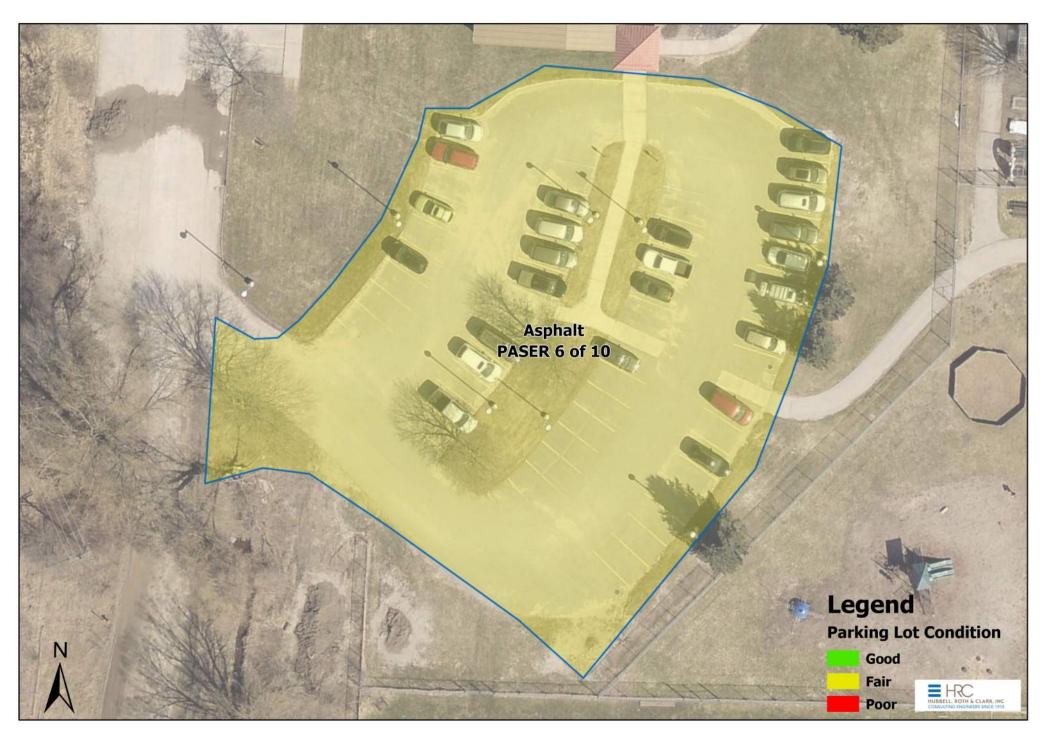


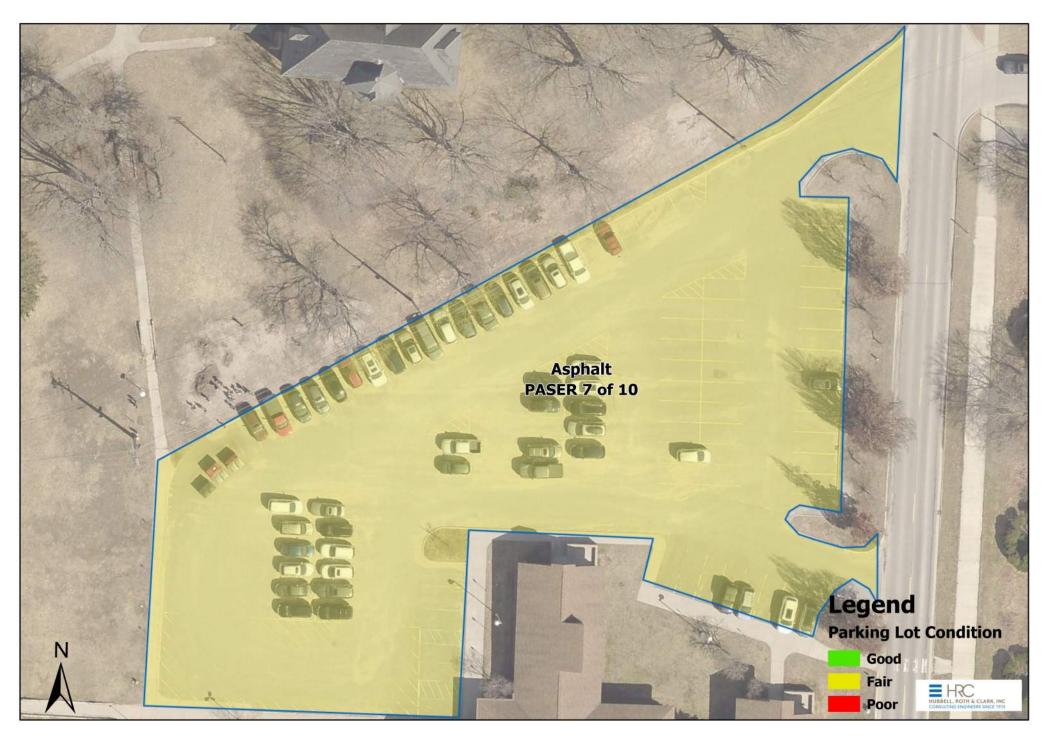


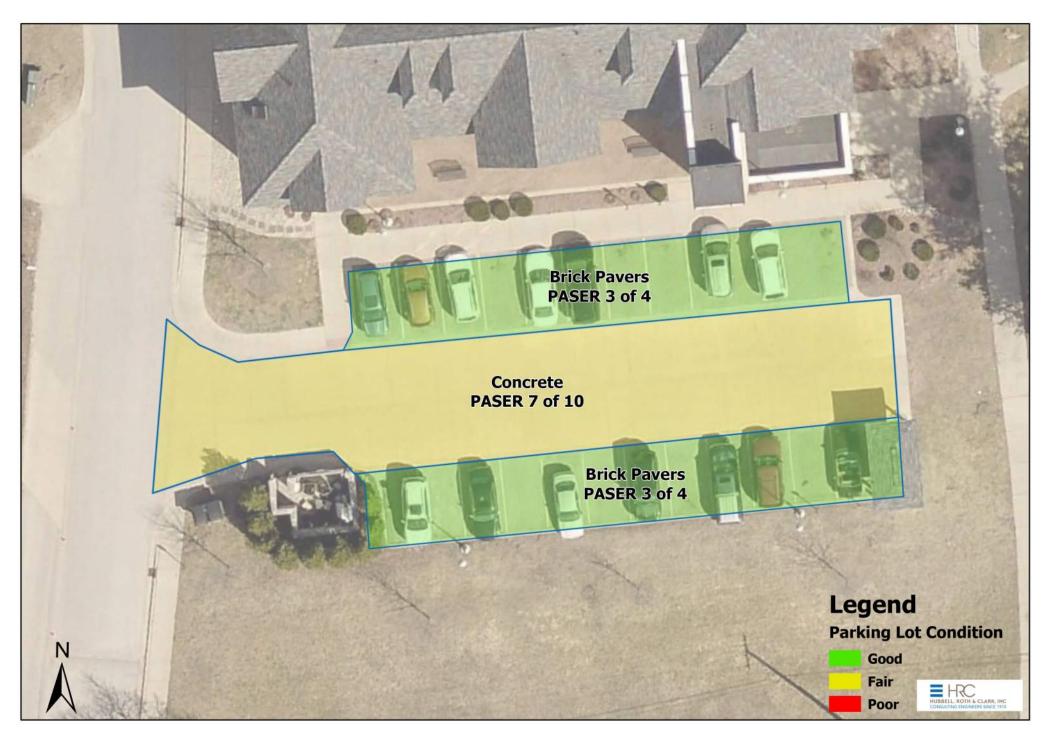
Appendix E-3 Parking Lot Inspections

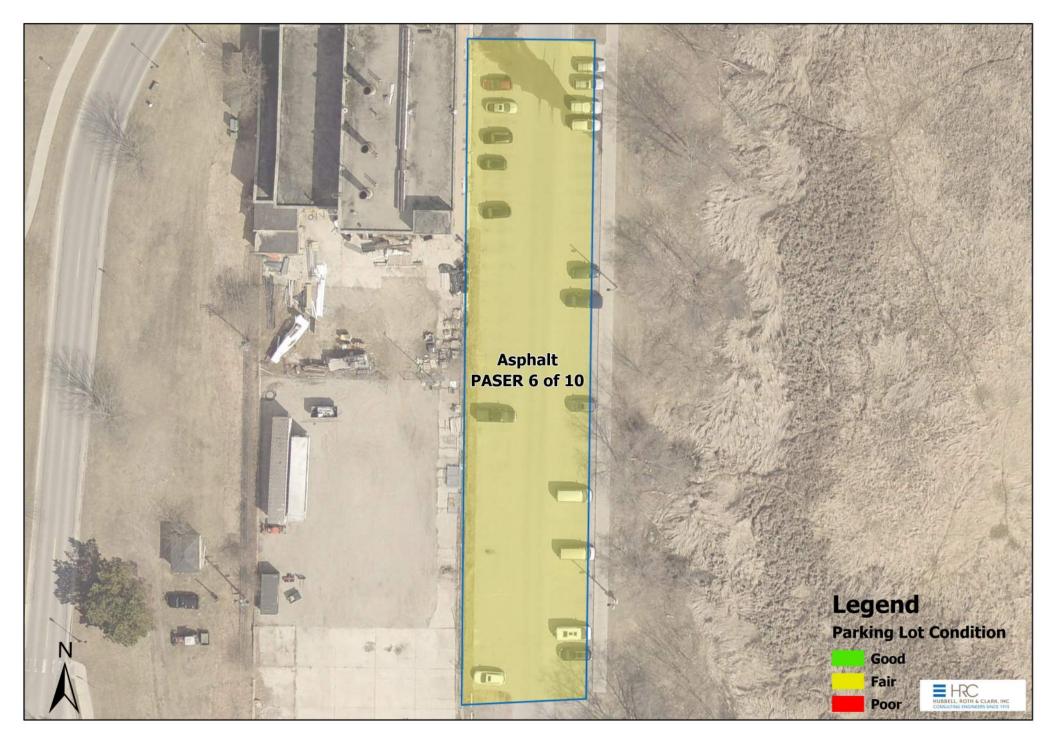
Grand Traverse Parking Lot Overall Map (North)

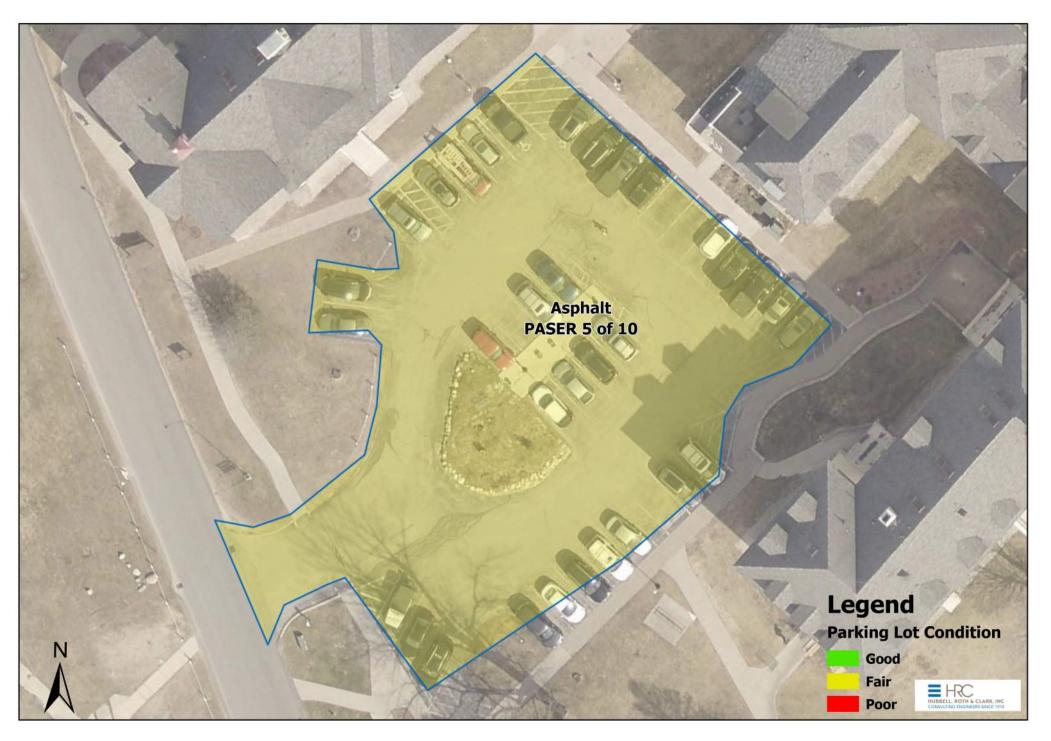


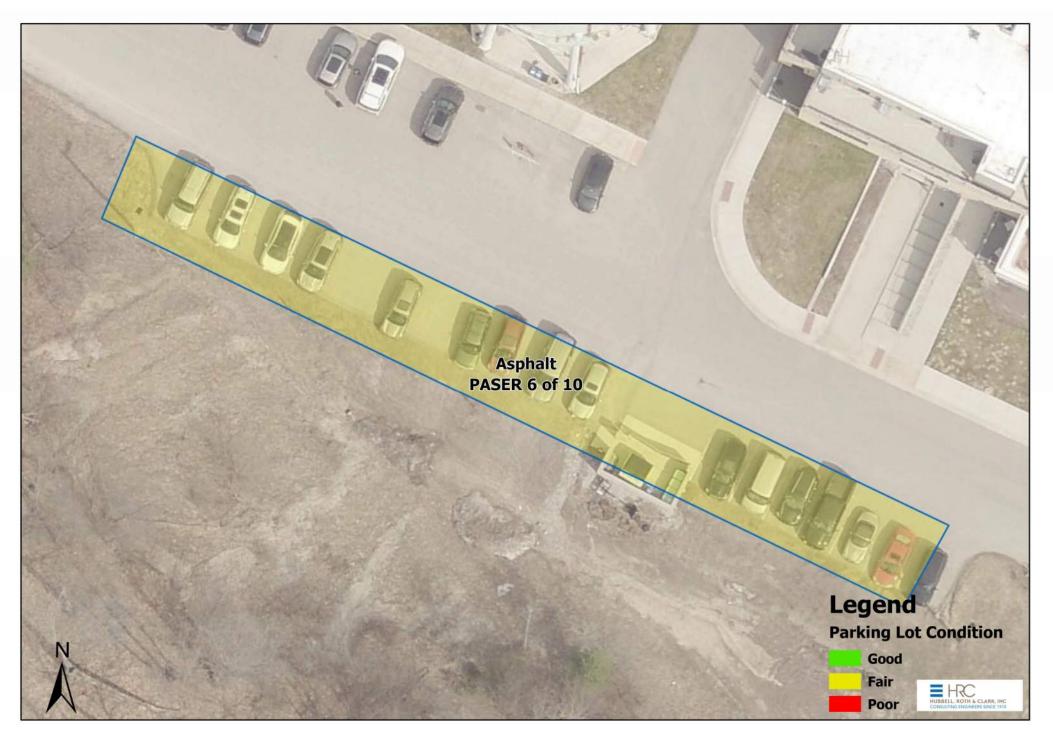

Grand Traverse Parking Lot Overall Map (Central)

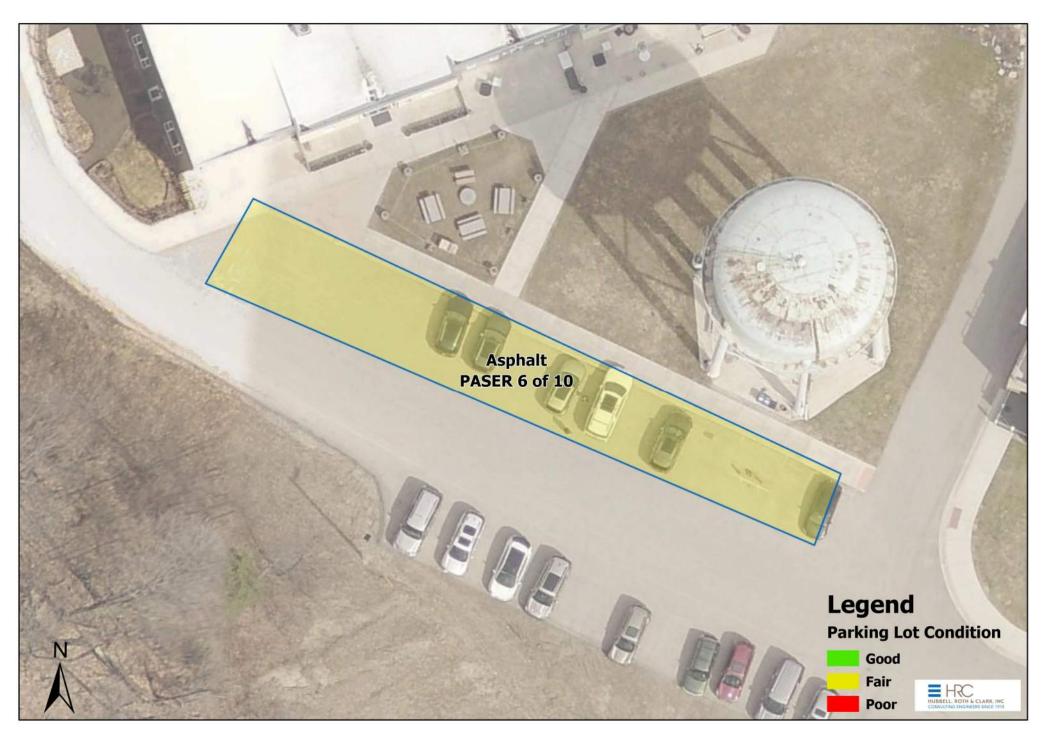


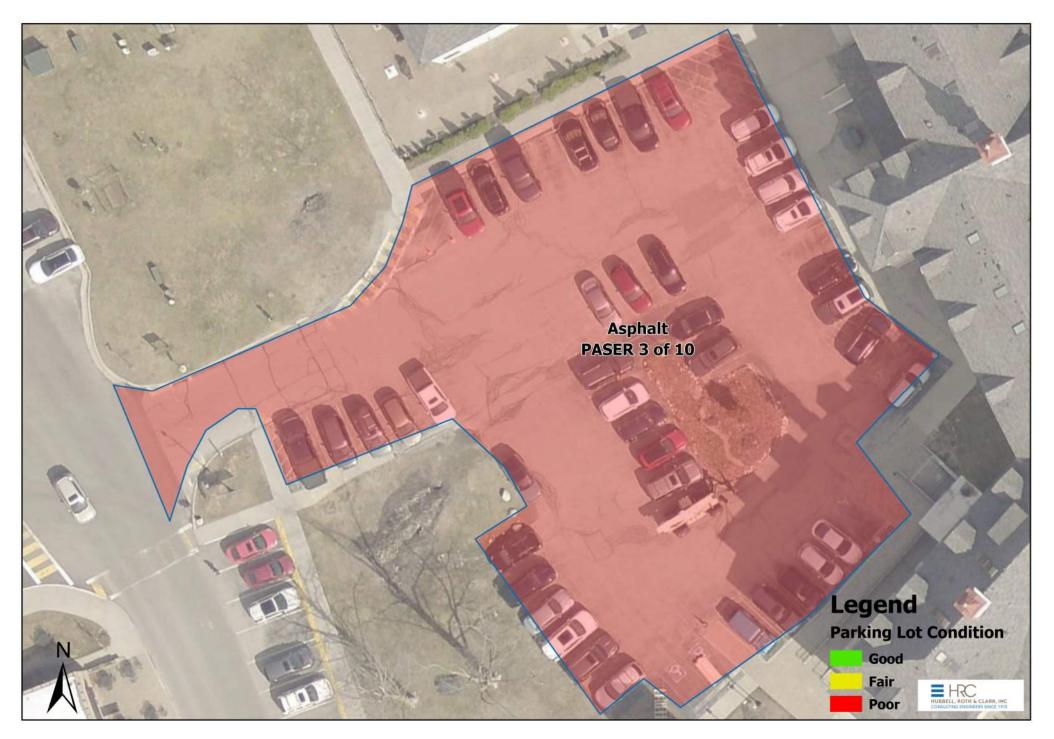

Grand Traverse Parking Lot Overall Map (South)

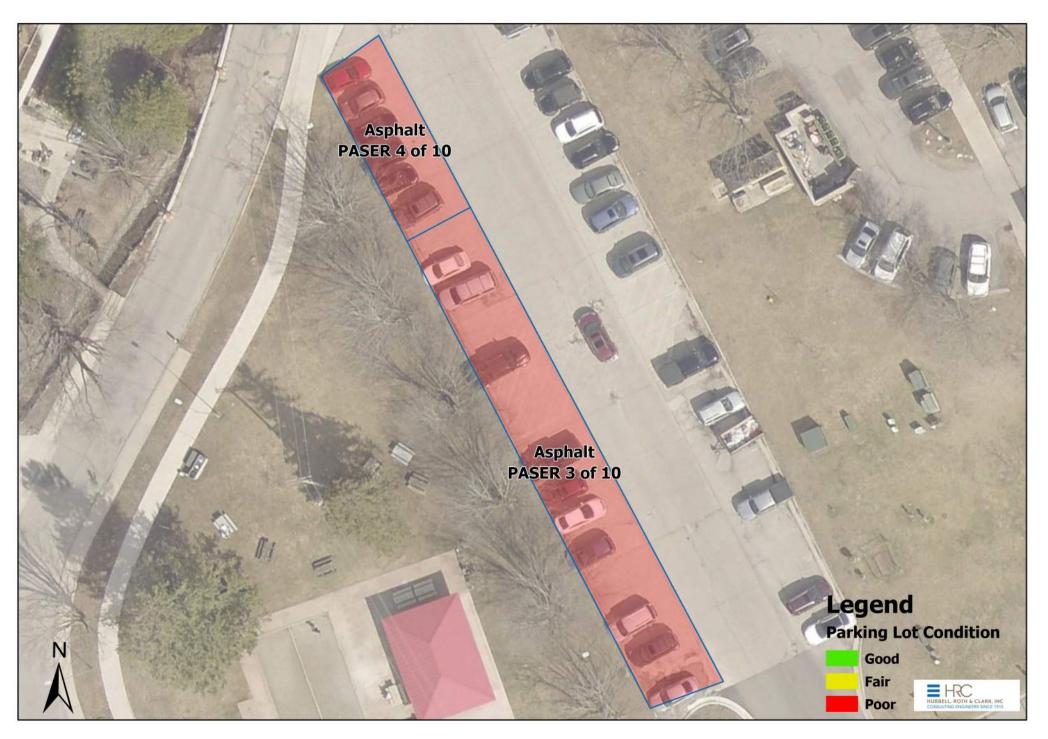


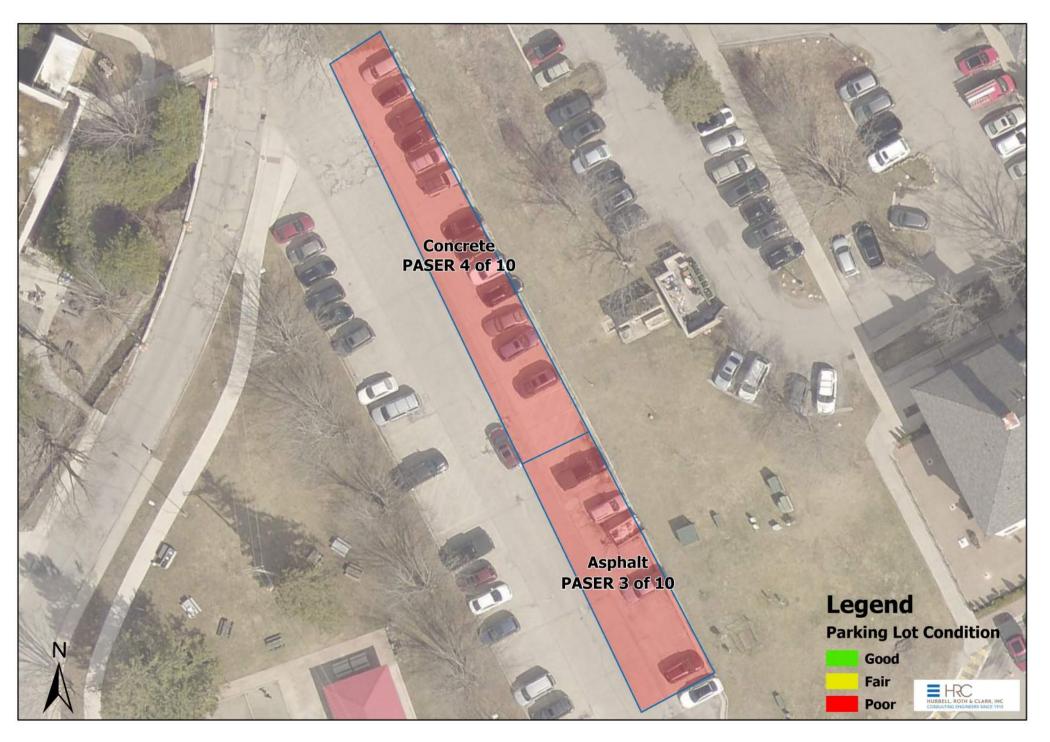


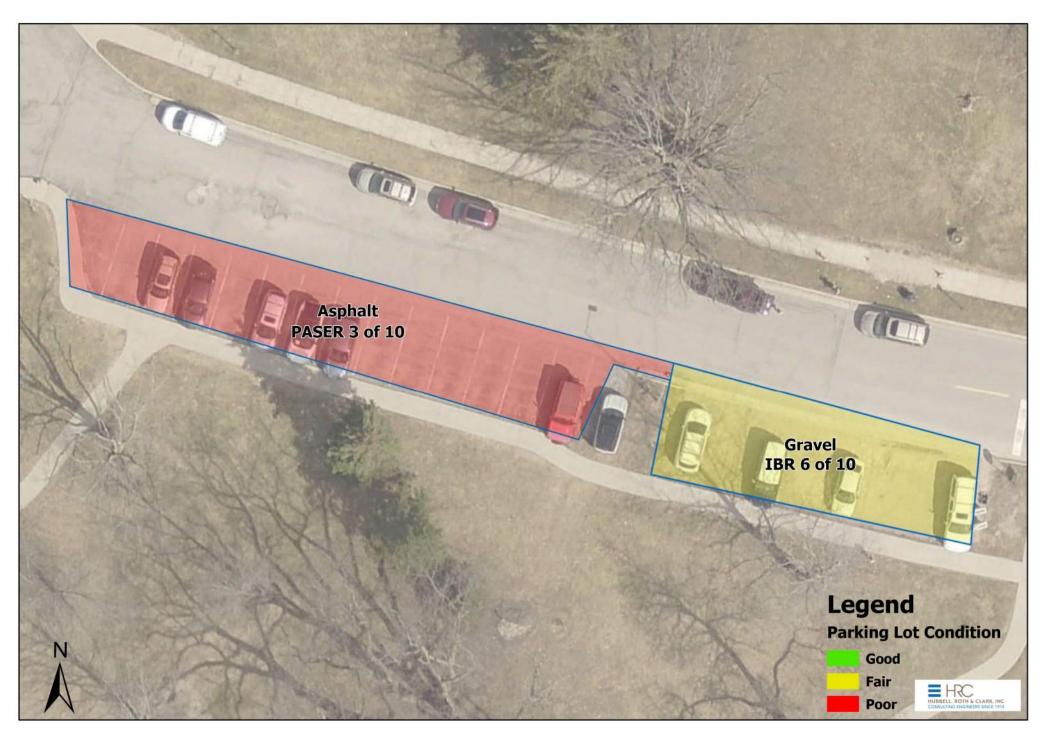


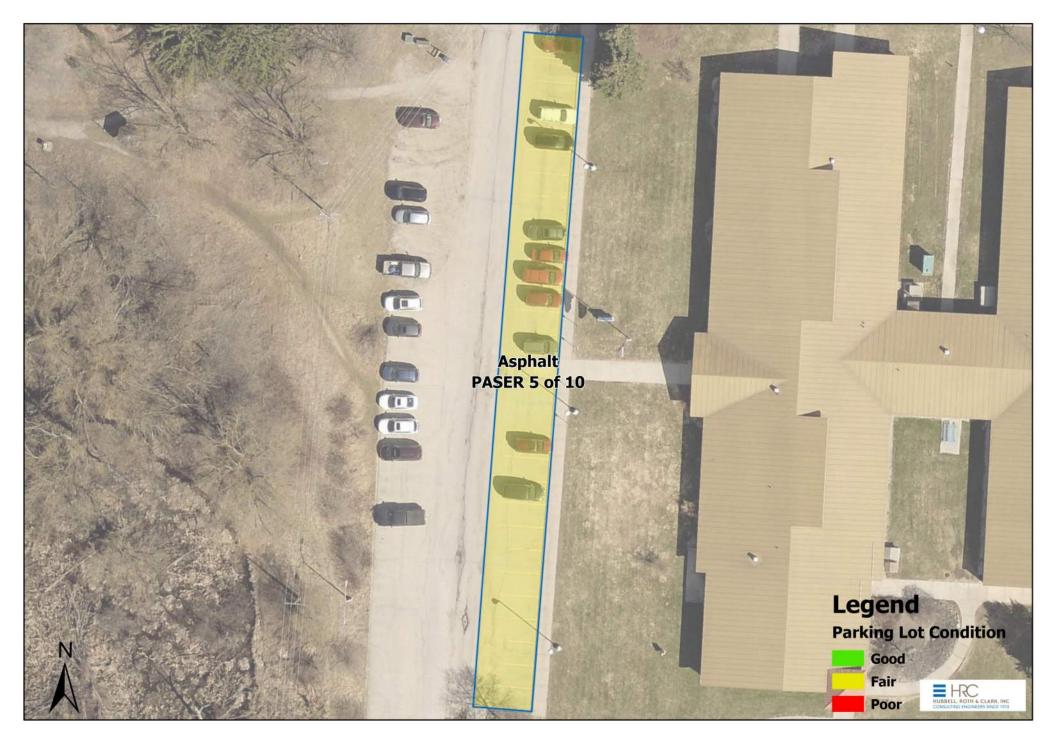


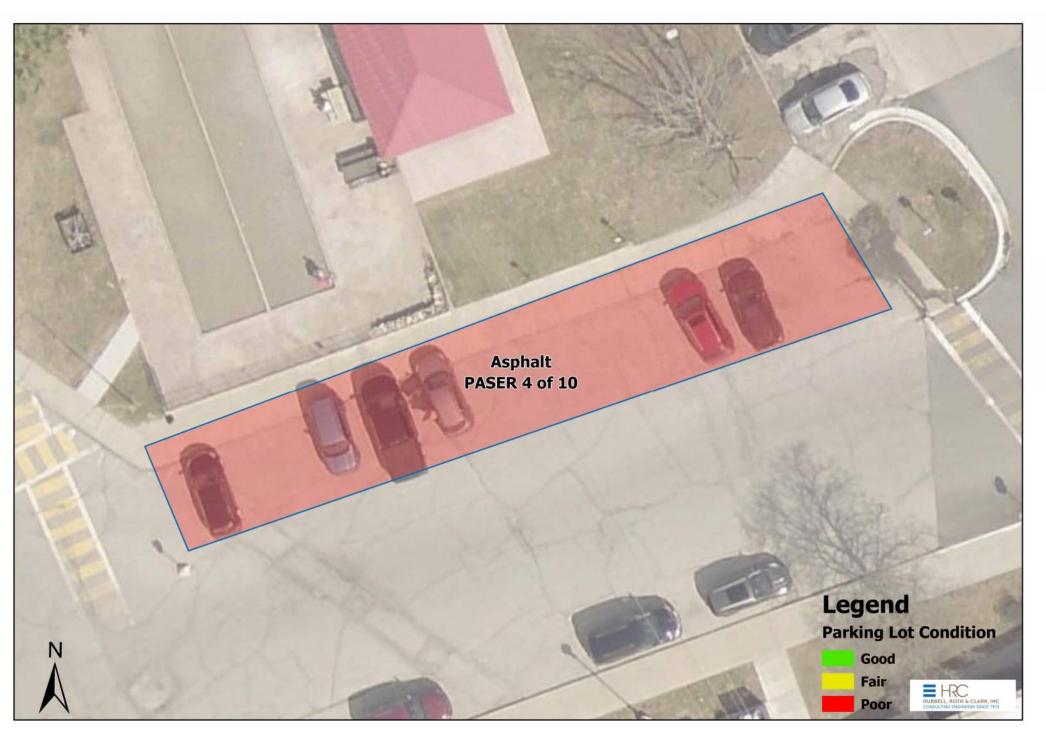


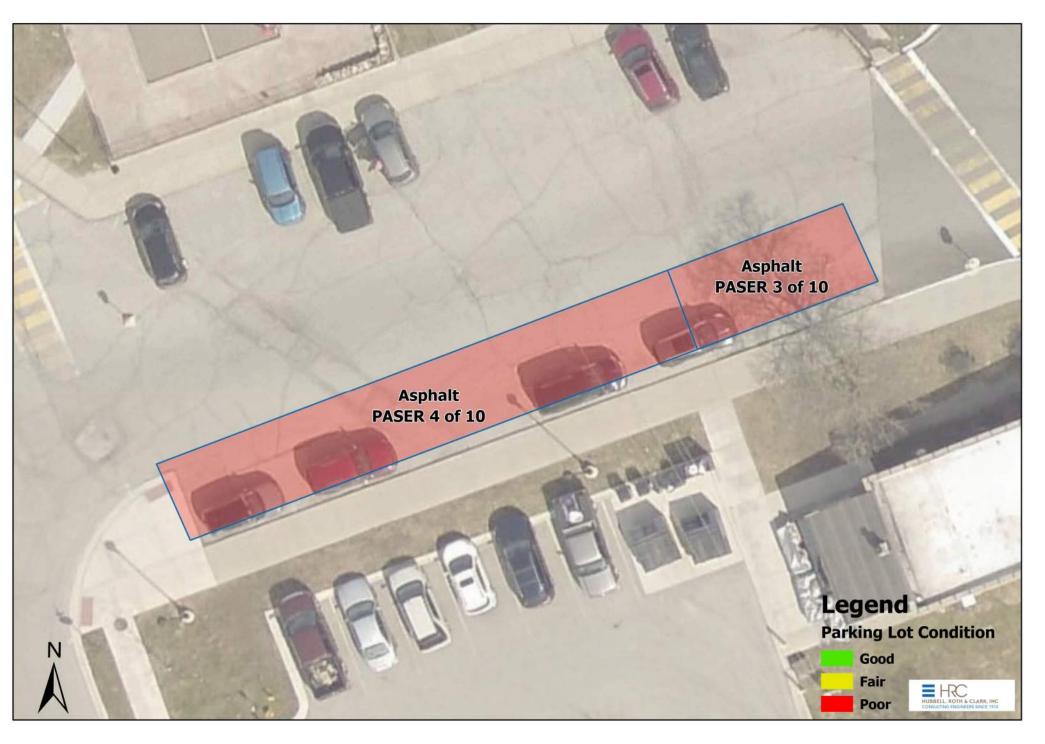


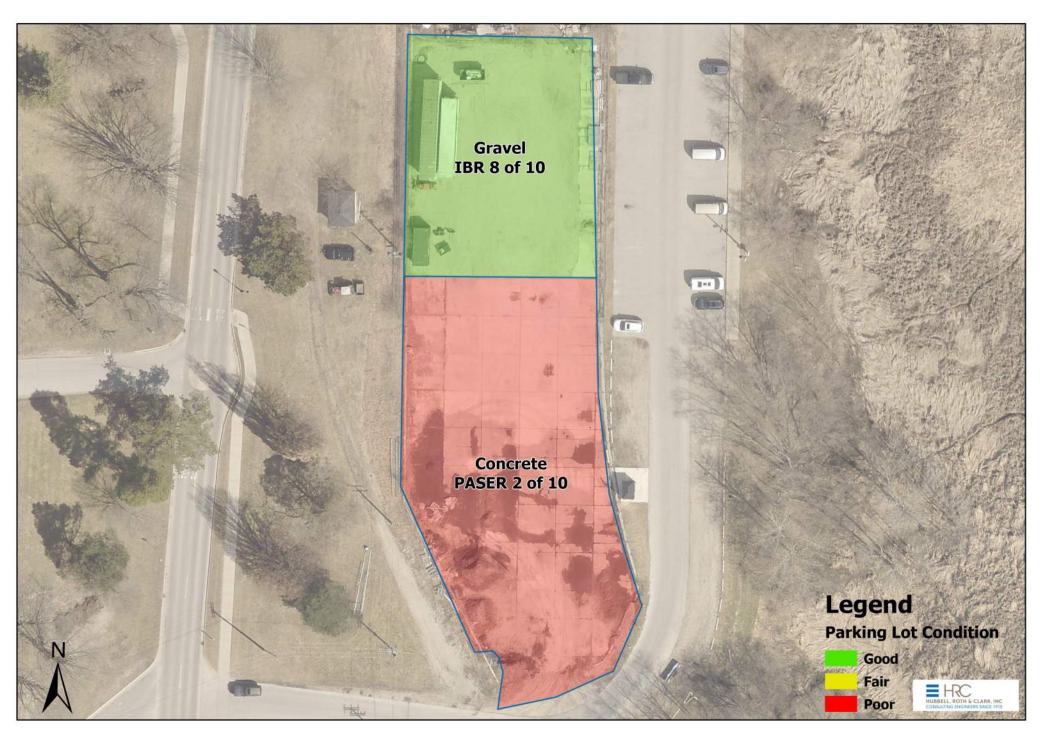


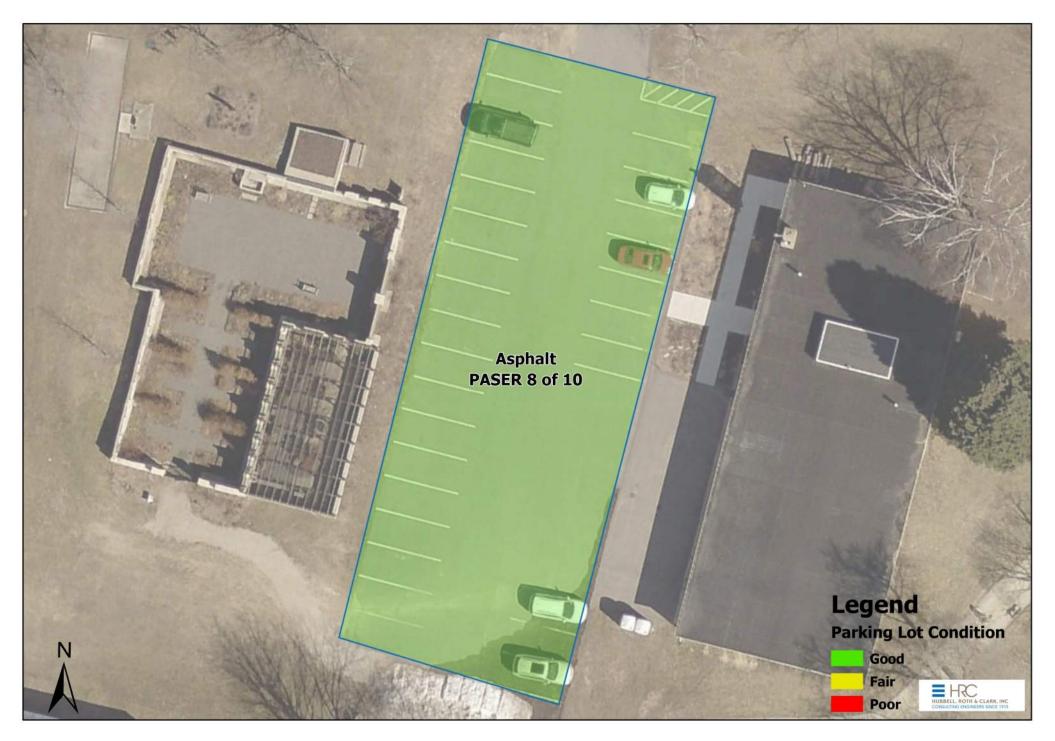


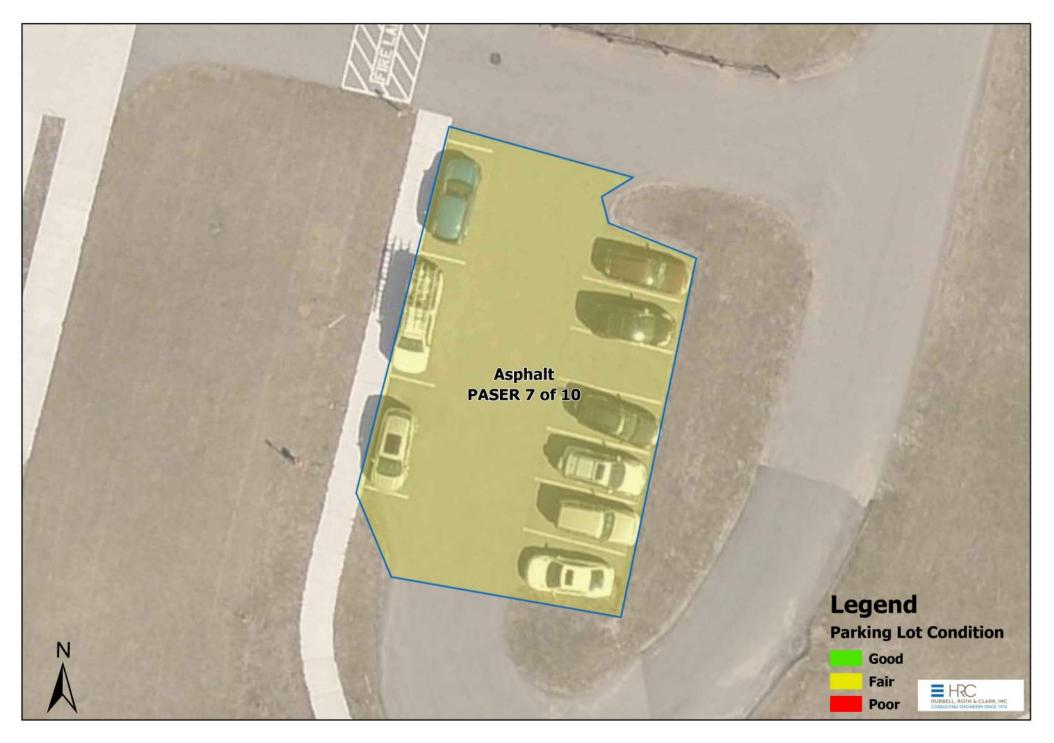


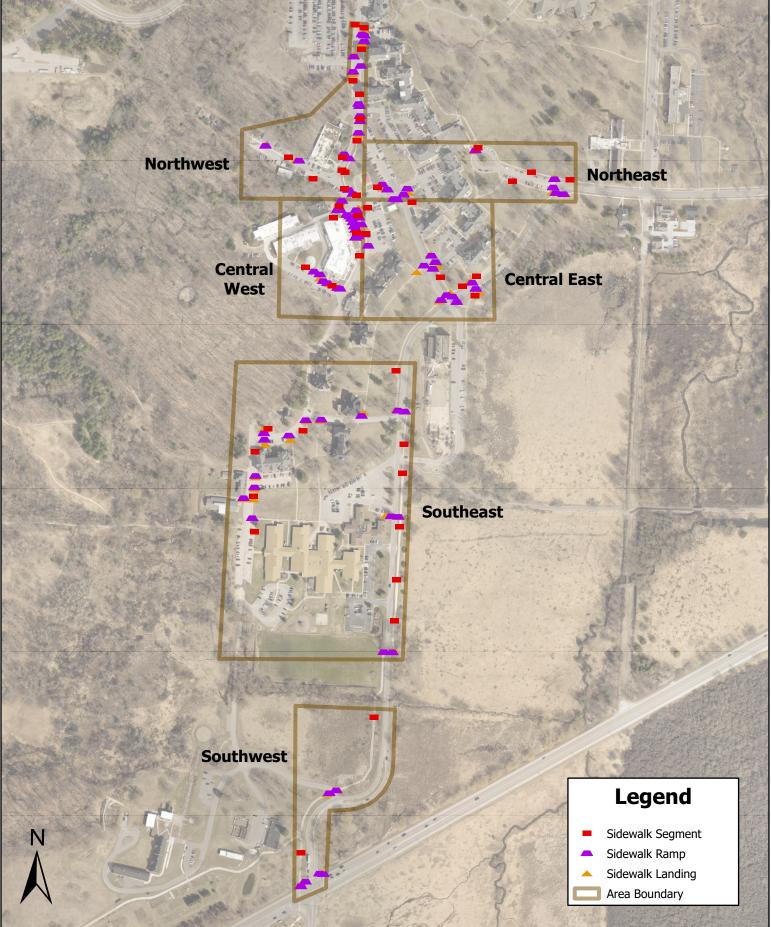


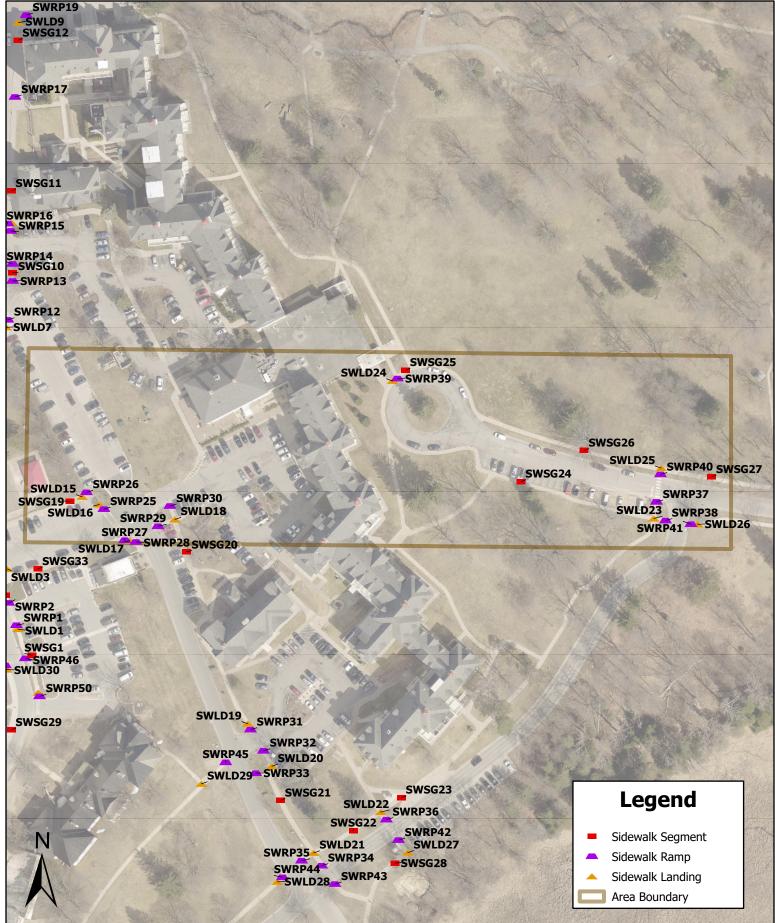




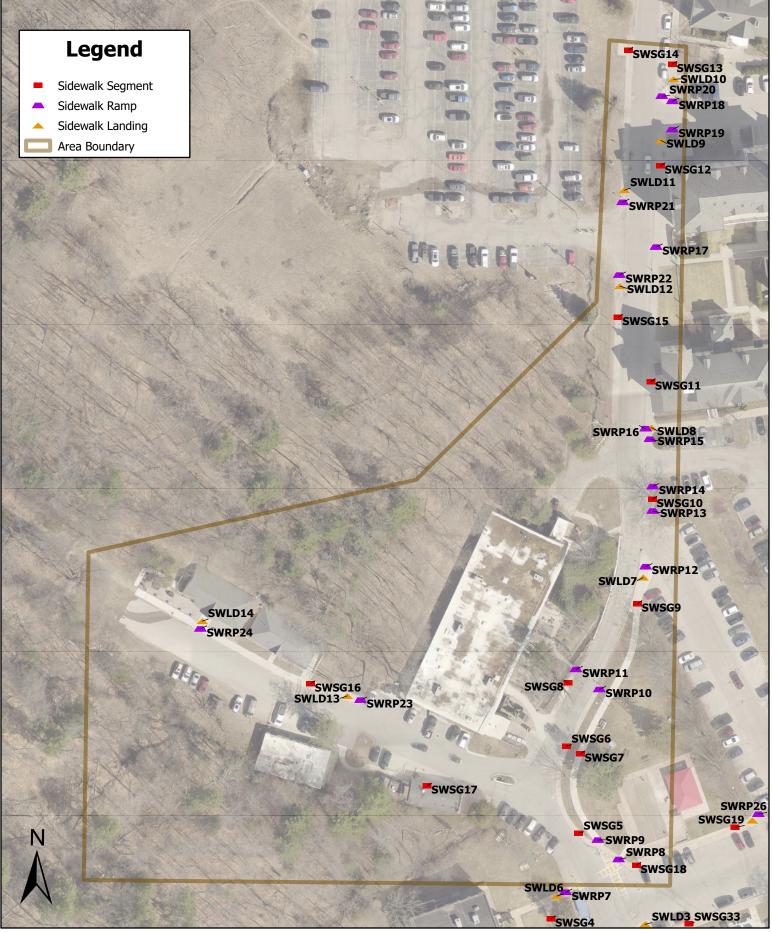


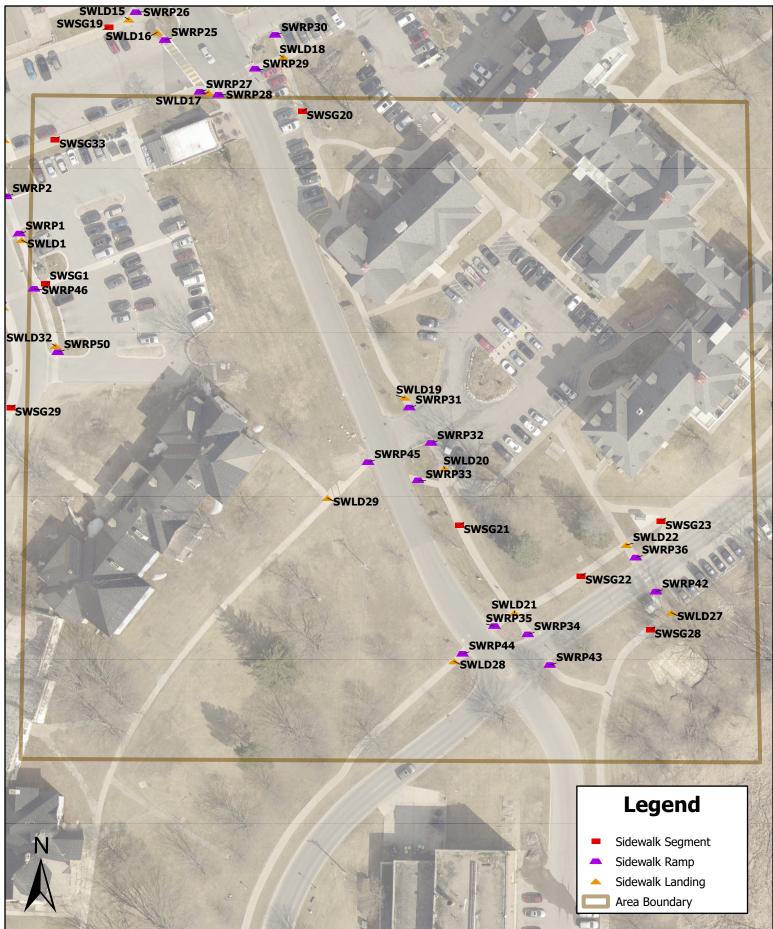


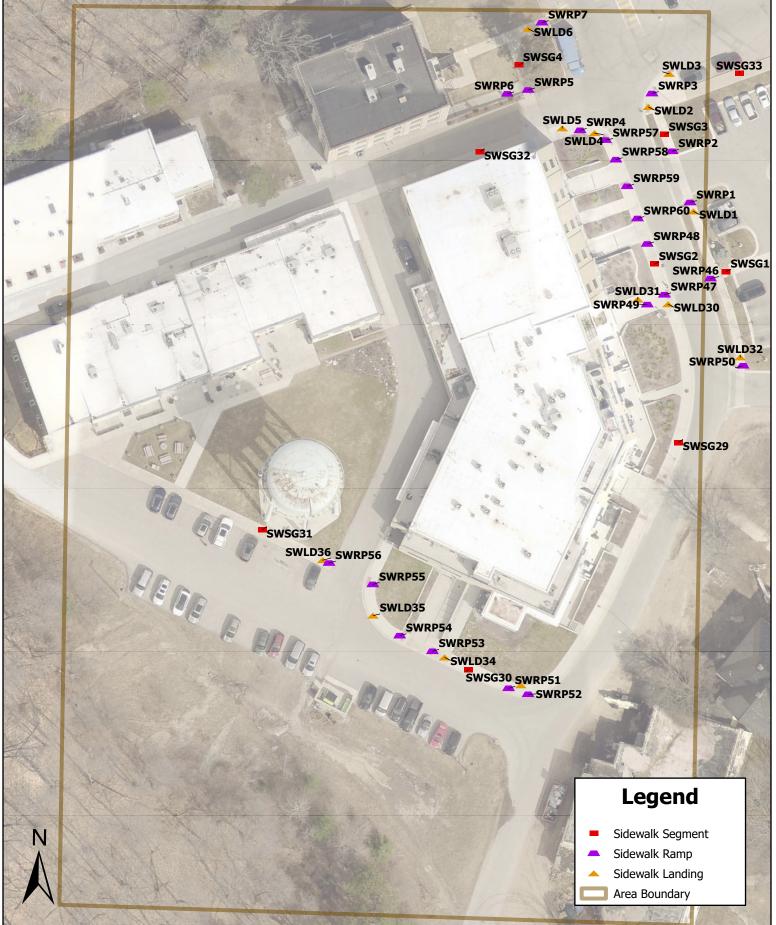


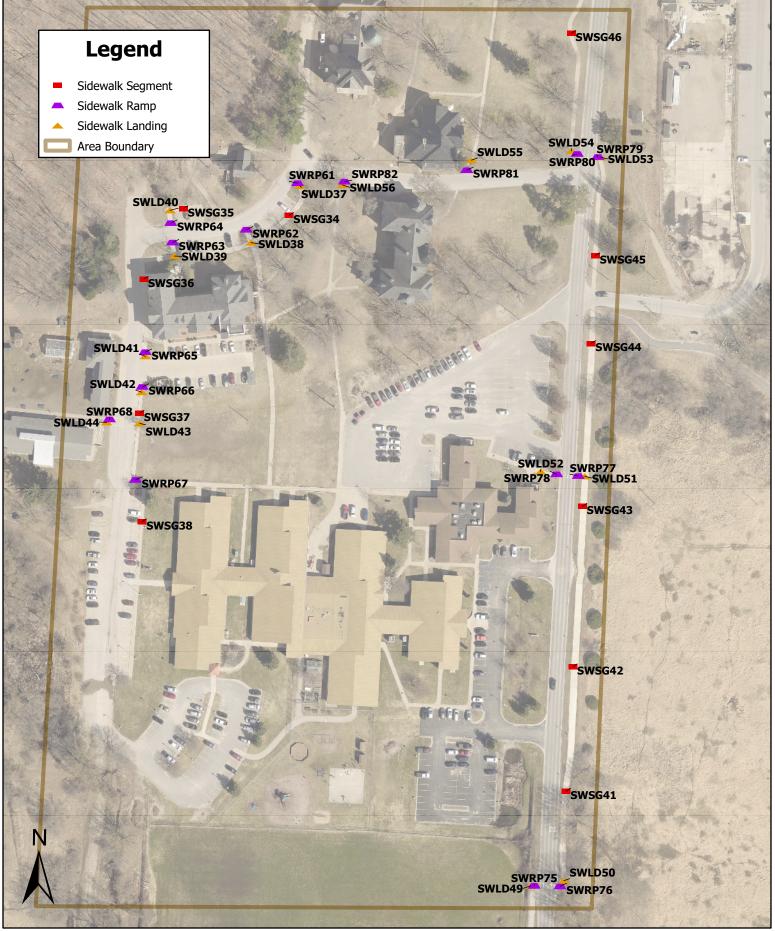


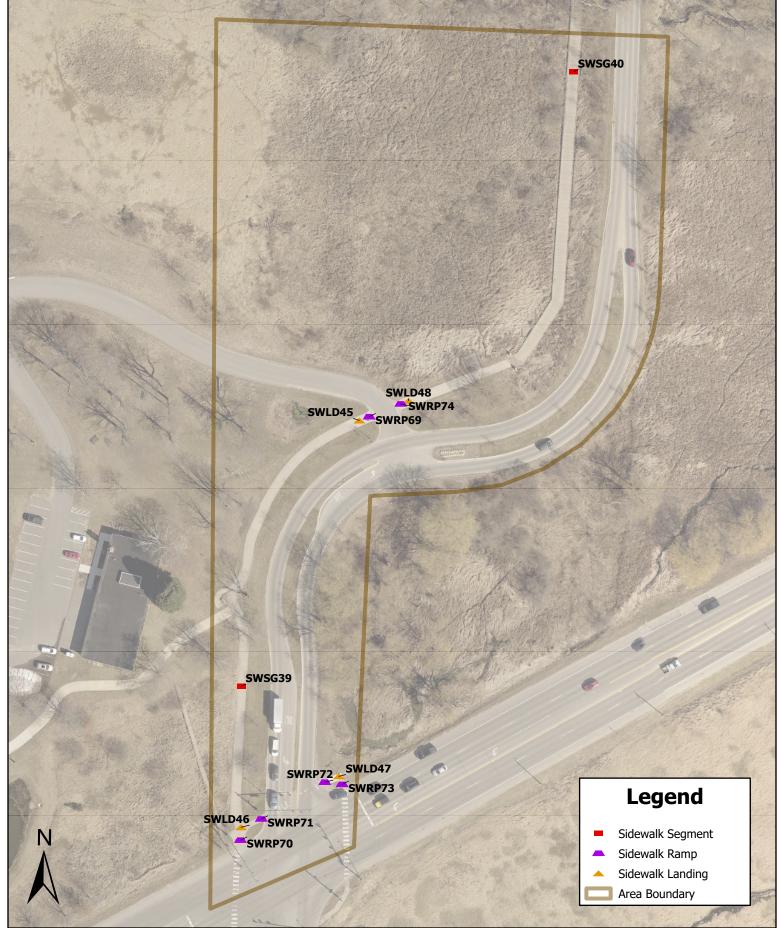
Appendix E-4 Sidewalk Inspections


GT Commons Sidewalk Inspections Index Map


GT Commons Sidewalk Inspections Northeast


GT Commons Sidewalk Inspections Northwest


GT Commons Sidewalk Inspections Central East


GT Commons Sidewalk Inspections Central West

GT Commons Sidewalk Inspections Southeast

GT Commons Sidewalk Inspections Southwest

Grand Traverse Commons - Sidewalk Segment Conditions

AssetID	Pavement Condition
SWSG1	Good
SWSG2	Good
SWSG3	Good
SWSG4	Poor
SWSG5	Poor
SWSG6	Poor
SWSG0 SWSG7	Good
SWSG8	Fair
SWSG9	Good
SWSG10	Fair
SWSG10 SWSG11	Good
SWSG11 SWSG12	Good
SWSG12 SWSG13	Good
SWSG13 SWSG14	Poor
SWSG14 SWSG15	Poor
SWSG15 SWSG16	Good
SWSG10 SWSG17	Good
SWSG17	Poor
SWSG18 SWSG19	Fair
SWSG19	Fair
SWSG20	Good
SWSG21	Good
SWSG22 SWSG23	Fair
SWSG23	Fair
SWSG24 SWSG25	Poor
SWSG25	Good
SWSG20 SWSG27	Good
SWSG27	Good
SWSG28	Good
SWSG29 SWSG30	Good
SWSG30 SWSG31	Fair
SWSG32	Good
SWSG33 SWSG34	Good Good
SWSG34 SWSG35	Good Fair
SWSG35 SWSG36	
	Good
SWSG37	Good
SWSG38	Fair
SWSG39	Good
SWSG40	Good
SWSG41	Good
SWSG42	Good
SWSG43	Good
SWSG44	Good
SWSG45	Good
SWSG46	Good

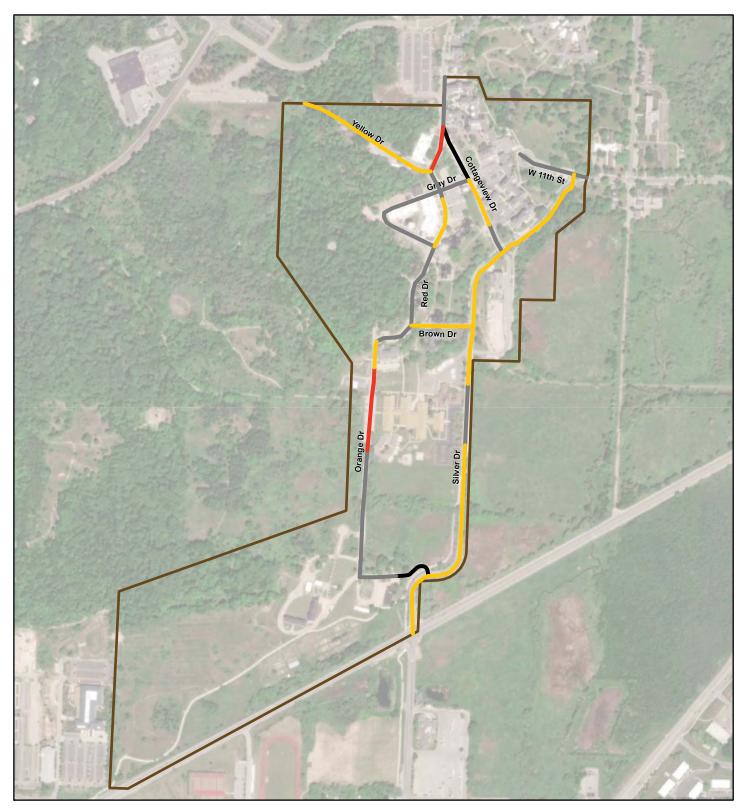
Grand Traverse Commons - Sidewalk Ramp Conditions

AssetID	Pavement Condition	Ramp Running Slope	Ramp Cross Slope	Detectable Warning Surface				
SWRP1	Good	< 8%	< 2%	Yes				
SWRP2	Good	< 8%	> 2%	Yes				
SWRP3	Good	< 8%	< 2%	Yes				
SWRP4	Good	< 8%	< 2%	Yes				
SWRP5	Poor	< 8%	< 2%	No				
SWRP6	Poor	< 8%	< 2%	No				
SWRP7	Poor	< 8%	< 2%	No				
SWRP8	Poor	< 8%	< 2%	No				
SWRP9	Poor	< 8%	< 2%	No				
SWRP10	Poor	< 8%	< 2%	No				
SWRP11	Fair	< 8%	< 2%	No				
SWRP12	Good	< 8%	< 2%	Yes				
SWRP13	Fair	< 8%	< 2%	No				
SWRP14	Fair	< 8%	> 2%	No				
SWRP15	Fair	< 8%	< 2%	No				
	Fair	< 8%	< 2%	No				
SWRP17	Good	< 8%	> 2%	No				
SWRP18	Good	< 8%	< 2%	No				
SWRP19	Good	< 8%	< 2%	No				
SWRP20	Good	< 8%	< 2%	Yes				
SWRP21	Poor	< 8%	< 2%	No				
SWRP22	Poor	< 8%	< 2%	No				
SWRP23	Good	< 8%	< 2%	No				
SWRP24	Good	>8%	> 2%	No				
SWRP25	Poor	< 8%	< 2%	No				
SWRP26	Good	< 8%	< 2%	No				
SWRP27	Good	< 8%	> 2%	No				
SWRP28	Fair	< 8%	> 2%	No				
SWRP29	Good	< 8%	< 2%	No				
SWRP30	Poor	< 8%	< 2%	No				
SWRP31	Fair	< 8%	< 2%	No				
SWRP32	Poor	< 8%	< 2%	No				
SWRP33	Good	< 8%	< 2%	No				
SWRP34	Good	< 8%	< 2%	Yes				
SWRP35	Good	< 8%	> 2%	Yes				
SWRP36	Good	< 8%	< 2%	Yes				
SWRP37	Good	>8%	> 2%	Yes				
SWRP38	Fair	>8%	> 2%	Yes				
SWRP39	Poor	>8%	< 2%	No				
SWRP40	Good	< 8%	< 2%	Yes				
SWRP41	Fair	< 8%	< 2%	Yes				
SWRP42	Good	< 8%	< 2%	Yes				
SWRP43	Good	< 8%	< 2%	Yes				
SWRP44	Good	< 8%	> 2%	Yes				
SWRP45	Poor	>8%	< 2%	No				
SWRP46	Good	< 8%	< 2%	Yes				
SWRP47	Good	< 8%	< 2%	Yes				
SWRP48	Good	< 8%	< 2%	Yes				

Grand Traverse Commons - Sidewalk Ramp Conditions

AssetID	Pavement Condition	Ramp Running Slope	Ramp Cross Slope	Detectable Warning Surface				
SWRP49	Good	< 8%	< 2%	Yes				
SWRP50	Good	< 8%	< 2%	Yes				
SWRP51	Good	< 8%	< 2%	Yes				
SWRP52	Good	< 8%	< 2%	No				
SWRP53	Good	< 8%	< 2%	Yes				
SWRP54	Good	< 8%	< 2%	Yes				
SWRP55	Good	< 8%	< 2%	Yes				
SWRP56	Good	< 8%	< 2%	Yes				
SWRP57	Good	< 8%	< 2%	Yes				
SWRP58	Good	< 8%	< 2%	Yes				
SWRP59	Good	< 8%	< 2%	Yes				
SWRP60	Good	< 8%	< 2%	Yes				
SWRP61	Fair	< 8%	< 2%	No				
SWRP62	Fair	< 8%	< 2%	Yes				
SWRP63	Good	< 8%	< 2%	Yes				
SWRP64	Fair	< 8%	< 2%	Yes				
SWRP65	Good	< 8%	< 2%	No				
SWRP66	Good	< 8%	> 2%	No				
SWRP67	Good	< 8%	< 2%	No				
SWRP68	Good	< 8%	< 2%	No				
SWRP69	Fair	< 8%	< 2%	No				
SWRP70	Fair	< 8%	< 2%	Yes				
SWRP71	Good	< 8%	< 2%	Yes				
SWRP72	Good	< 8%	< 2%	Yes				
SWRP73	Fair	< 8%	< 2%	Yes				
SWRP74	Good	< 8%	< 2%	No				
SWRP75	Good	< 8%	< 2%	Yes				
SWRP76	Good	< 8%	< 2%	Yes				
SWRP77	Good	< 8%	< 2%	Yes				
SWRP78	Good	< 8%	< 2%	Yes				
SWRP79	Good	< 8%	< 2%	Yes				
SWRP80	Good	< 8%	< 2%	Yes				
SWRP81	Fair	< 8%	< 2%	No				
SWRP82	Good	< 8%	> 2%	No				

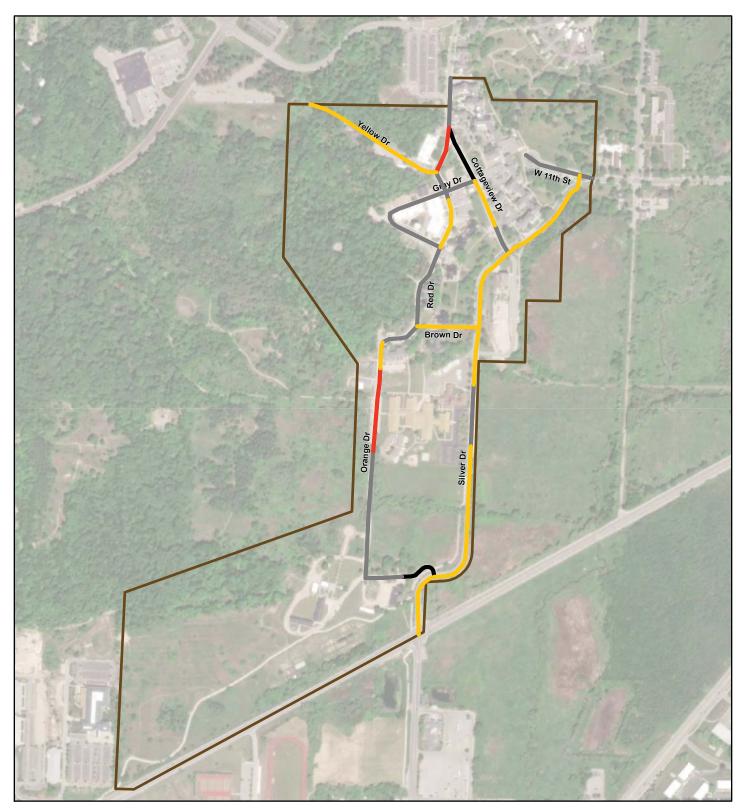
Grand Traverse Commons - Sidewalk Landing Conditions


AssetID	Pavement Condition	Landing Slope
SWLD1	Good	< 2%
SWLD2	Good	< 2%
SWLD3	Fair	< 2%
SWLD4	Good	> 2%
SWLD5	Good	< 2%
SWLD6	Fair	> 2%
SWLD7	Good	> 2%
SWLD8	Fair	> 2%
SWLD9	Good	< 2%
SWLD10	Good	< 2%
SWLD11	Poor	< 2%
SWLD12	Poor	< 2%
SWLD13	Good	> 2%
SWLD14	Good	> 2%
SWLD15	Poor	< 2%
SWLD16	Good	< 2%
SWLD17	Fair	> 2%
SWLD18	Good	< 2%
SWLD19	Fair	< 2%
SWLD20	Fair	> 2%
SWLD21	Good	< 2%
SWLD22	Good	< 2%
SWLD23	Good	> 2%
SWLD24	Poor	> 2%
SWLD25	Good	> 2%
SWLD26	Fair	< 2%
SWLD27	Good	< 2%
SWLD28	Good	< 2%
SWLD29	Fair	> 2%
SWLD30	Good	< 2%
SWLD31	Good	< 2%
SWLD32	Good	< 2%
SWLD33	Good	< 2%
SWLD34	Good	< 2%
SWLD35	Good	< 2%
SWLD36	Good	< 2%
SWLD37	Good	< 2%
SWLD38	Good	< 2%
SWLD39	Good	< 2%
SWLD40	Fair	< 2%
SWLD41	Good	> 2%
SWLD42	Good	> 2%
SWLD43	Poor	< 2%
SWLD44	Good	< 2%

Grand Traverse Commons - Sidewalk Landing Conditions

AssetID	Pavement Condition	Landing Slope
SWLD45	Good	< 2%
SWLD46	Fair	< 2%
SWLD47	Good	< 2%
SWLD48	Good	< 2%
SWLD49	Good	< 2%
SWLD50	Good	< 2%
SWLD51	Good	< 2%
SWLD52	Good	< 2%
SWLD53	Good	< 2%
SWLD54	Good	< 2%
SWLD55	Fair	< 2%
SWLD56	Good	< 2%

Appendix F — Utility, Road and Parking Lot LOS Maps


Grand Traverse Commons Storm Conditions


Grand Traverse Commons Sanitary Conditions

Grand Traverse Commons Parking Lot and Utility Conditions Map (North)

300 Feet

Ν

Grand Traverse Commons Parking Lot and Utility Conditions Map (Central)

500 Feet

Grand Traverse Commons Parking Lot and Utility Conditions Map (South)

75 150 300 Feet

Ν

Appendix G — Capital Improvement Combined Project Cost Breakdown

Grand Traverse Commons - Road Capital Improvement Plan

Project	Segment	From	То	L n Miloc	Pvmt	PASER Road	Road Storm	Storm	Storm	Sanitary	Sanitary	Sanitary	Total
Priority		From	10	Ln Miles	Туре	Ratings Treatment	Estimate Rating	Treatment	Estimate	Rating	Treatment	Estimate	Estimate
1	Orange Dr	1,378 Ft North of Silver Dr	442 Ft South of Brown Dr	0.211	Asphalt	2 Reconstruction	\$211,000 Poor	Replace cover and Adj	\$8,600	Fair	Replace	\$0	\$219,600
	Red Dr	Gray Dr	Cottageview Dr	0.173	Asphalt	3 & 4 Reconstruction		Replace MH and Sewer	\$16,120	Fair	Line & Adj	\$27,530	\$216,650
2	Cottageview Dr	Gray Dr	North Limits	0.277	Asphalt & Concrete	3 & 4 Reconstruction	\$277,000 None	None	\$0	None	None	\$0	\$277,000
	Gray Dr	Red Dr	Cottageview Dr	0.078	Asphalt	3 Reconstruction		None	\$0	None	None	\$0	\$78,000
3	11th St	Cul-de-sac	Silver Dr	0.148	Asphalt	2 Reconstruction	\$148,000 None	None	\$0	None	None	\$0	\$148,000
4	Red Dr	Brown Dr	Gray Dr	0.214	Asphalt	3 Reconstruction	\$214,000 None	None	\$0	Fair	Repace & Adj	\$26,000	\$240,000
5	Gray Dr	Red Dr	Red Dr	0.314	Asphalt	6 Thin Overlay	\$78,500 None	None	\$0	Poor-Fair	Adj	\$5,000	\$83,500
6	Silver Dr	Cottageview Dr	11th St	0.279	Asphalt	6 Thin Overlay	\$69,750 Fair	None	\$0	Fair	Replace	\$8,000	\$77,750
7	Brown Dr	Red Dr	Silver Dr	0.157	Asphalt	6 Thin Overlay	\$39,250 Fair	None	\$0	Fair	Adj	\$5,000	\$44,250
8	Silver Dr	Brown Dr	Cottageview Dr	0.216	Asphalt	6 Thin Overlay	\$54,000 Fair	None	\$0	None	None	\$0	\$54,000
9	Silver Dr	South Limits	Brown Dr	0.855	Asphalt	5 & 6 Thin Overlay	\$213,750 Fair	None	\$0	None	None	\$0	\$213,750
10	Orange Dr	442 Ft South of Brown Dr	Brown Dr	0.167	Asphalt	6 Thin Overlay	\$41,750 Fair	None	\$0	None	Minor Rehab	\$15,000	\$56,750
												Total	\$1,709,250

Grand Traverse Commons - Parking Lot Capital Improvement Plan

Project Priority	Parking Lot		Pvmt Type		Parking Lot Treatment	Parking Lot Estimate	Storm Structure Ratings	Storm Structure Treatment		INALITOLE			Gravity Main	Sanitary Gravity Main Treatment	Sanitary Gravity Main Estimate	Total Estimate
1	PL1	31,917	Asphalt	3	Reconstruction (Asphalt)	\$574,506	Poor	Replace	\$12,500	None	None	\$0	None	None	\$0	\$587,006
2	PL 26	21,700 12,681	Concrete Gravel	2	Reconstruction (Concrete)	\$722,001	None	None	\$0	None	None	\$0	Fair			\$722,001
3	PL 12	20,821	Asphalt	3	Reconstruction (Asphalt)	\$374,778	None	None	\$0	None	None	\$0	None	None	\$0	\$374,778
4	PL 3	47,980	Asphalt	7	Crack Seal	\$23,990	Fair	None	\$0	Poor	Replace & Adjust	\$15,000	Good & Fair	None	\$0	\$38,990
5	PL 8	17,560	Asphalt	5	Thin Overlay	\$47,412	Fair	None	\$0	None	None	\$0	Poor	None	\$0	\$47,412
6	PL 9	20,750	Asphalt	6	Thin Overlay	\$56,025	Fair	None	\$0	Fair	Replace	\$5,000	None	None	\$0	\$61,025
7	PL 7	20,749	Asphalt	6	Thin Overlay	\$56,022	Fair	Adjust	\$1,800	Poor	Adjust	\$600	Poor	None	\$0	\$58,422
8	PL 2	28,240	Asphalt	6	Thin Overlay	\$76,248	Fair	Adjust	\$2,400	None	None	\$0	None	None	\$0	\$78,648
9	PL 13	1,916	Asphalt	6	Thin Overlay	\$5,173	Fair	Adjust	\$1,200	Poor	Replace	\$10,000	Fair	None	\$0	\$16,373
10	PL 21	2,706	Asphalt	4	Mill & Overlay	\$24,354	None	None	\$0	None	None	\$0	None	None	\$0	\$24,354
	Total \$2,009,010															